Covering 70 % of Earth, oceans are at the same time the most common and the environment least studied by microbiologists. Considering the large gaps in our knowledge on the presence of marine fungi in the oceans, the aim of this research was to isolate and identify the culturable fungal community within three species of sponges, namely Dysidea fragilis, Pachymatisma johnstonia and Sycon ciliatum, collected in the Atlantic Ocean and never studied for their associated mycobiota. Applying different isolation methods, incubation temperatures and media, and attempting to mimic the marine and sponge environments, were fundamental to increase the number of cultivable taxa. Fungi were identified using a polyphasic approach, by means of morpho-physiological, molecular and phylogenetic techniques. The sponges revealed an astonishing fungal diversity represented by 87 fungal taxa. Each sponge hosted a specific fungal community with more than half of the associated fungi being exclusive of each invertebrate. Several species isolated and identified in this work, already known in terrestrial environment, were first reported in marine ecosystems (21 species) and in association with sponges (49 species), including the two new species Thelebolus balaustiformis and Thelebolus spongiae, demonstrating that oceans are an untapped source of biodiversity

The culturable mycobiota associated with three Atlantic sponges, including two new species: Thelebolus balaustiformis and T. spongiae

E. Bovio;L. Garzoli;A. Poli;V. Prigione;G. C. Varese
Last
2018-01-01

Abstract

Covering 70 % of Earth, oceans are at the same time the most common and the environment least studied by microbiologists. Considering the large gaps in our knowledge on the presence of marine fungi in the oceans, the aim of this research was to isolate and identify the culturable fungal community within three species of sponges, namely Dysidea fragilis, Pachymatisma johnstonia and Sycon ciliatum, collected in the Atlantic Ocean and never studied for their associated mycobiota. Applying different isolation methods, incubation temperatures and media, and attempting to mimic the marine and sponge environments, were fundamental to increase the number of cultivable taxa. Fungi were identified using a polyphasic approach, by means of morpho-physiological, molecular and phylogenetic techniques. The sponges revealed an astonishing fungal diversity represented by 87 fungal taxa. Each sponge hosted a specific fungal community with more than half of the associated fungi being exclusive of each invertebrate. Several species isolated and identified in this work, already known in terrestrial environment, were first reported in marine ecosystems (21 species) and in association with sponges (49 species), including the two new species Thelebolus balaustiformis and Thelebolus spongiae, demonstrating that oceans are an untapped source of biodiversity
2018
1
141
167
http://www.fuse-journal.org/images/Issues/Vol1Art7.pdf
Atlantic Ocean, marine fungi, sponges, systematics, two new taxa
E. Bovio, L. Garzoli, A. Poli, V. Prigione, D. Firsova, G.P. McCormack, G.C. Varese
File in questo prodotto:
File Dimensione Formato  
Bovio_2018.pdf

Accesso aperto

Descrizione: Articolo open access
Tipo di file: PDF EDITORIALE
Dimensione 9.75 MB
Formato Adobe PDF
9.75 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2318/1666637
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 37
  • ???jsp.display-item.citation.isi??? ND
social impact