C-low-threshold mechanoreceptors (C-LTMRs) are sensory neurons that, beyond conveying pleasant touch, modulate nociceptive transmission within the spinal cord. However, pain alleviation by C-LTMRs remains poorly understood. Here, we show that the C-LTMR-derived TAFA4 chemokine induces a reinforcement of inhibitory synaptic transmission within spinal networks, which consequently depresses local excitatory synapses and impairs synaptic transmission from high-threshold C-fibers. In animals with inflammation induced by Freund's complete adjuvant, TAFA4 decreases the noxious stimulus-induced neuronal responses recorded in vivo and alleviates mechanical pain. Both effects are blocked by antagonists of GABAergic transmission. Furthermore, TAFA4 promotes microglial retraction in inflammation and increases the number of inhibitory synapses on lamina IIi somata. Altogether, these results demonstrate GABAergic interneurons to be the first integration relay for C-LTMRs and highlight a tight interplay between sensory neurons, microglial cells, and spinal interneurons, which fine-tunes inhibitory activity and nociceptive transmission in pathological conditions.
TAFA4 Reverses Mechanical Allodynia through Activation of GABAergic Transmission and Microglial Process Retraction
Salio Chiara;
2018-01-01
Abstract
C-low-threshold mechanoreceptors (C-LTMRs) are sensory neurons that, beyond conveying pleasant touch, modulate nociceptive transmission within the spinal cord. However, pain alleviation by C-LTMRs remains poorly understood. Here, we show that the C-LTMR-derived TAFA4 chemokine induces a reinforcement of inhibitory synaptic transmission within spinal networks, which consequently depresses local excitatory synapses and impairs synaptic transmission from high-threshold C-fibers. In animals with inflammation induced by Freund's complete adjuvant, TAFA4 decreases the noxious stimulus-induced neuronal responses recorded in vivo and alleviates mechanical pain. Both effects are blocked by antagonists of GABAergic transmission. Furthermore, TAFA4 promotes microglial retraction in inflammation and increases the number of inhibitory synapses on lamina IIi somata. Altogether, these results demonstrate GABAergic interneurons to be the first integration relay for C-LTMRs and highlight a tight interplay between sensory neurons, microglial cells, and spinal interneurons, which fine-tunes inhibitory activity and nociceptive transmission in pathological conditions.File | Dimensione | Formato | |
---|---|---|---|
Kambrun et al. Cell Reports 2018.pdf
Accesso aperto
Descrizione: Articolo principale
Tipo di file:
PDF EDITORIALE
Dimensione
3.12 MB
Formato
Adobe PDF
|
3.12 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.