Terminal tissue differentiation and function of slan+ monocytes in cancer is largely unexplored. Our recent studies demonstrated that slan+ monocytes differentiate into a distinct subset of dendritic cells (DC) in human tonsils and that slan+ cells colonize metastatic carcinoma-draining lymph nodes. Herein, we report by retrospective analysis of multi-institutional cohorts that slan+ cells infiltrate various types of non-Hodgkin lymphomas (NHL), particularly the diffuse large B-cell lymphoma (DLBCL) group, including the most aggressive, nodal and extranodal, forms. Nodal slan+ cells displayed features of either immature DC or macrophages, in the latter case ingesting tumor cells and apoptotic bodies. We also found in patients with DLBCL that peripheral blood slan+ monocytes, but not CD14+ monocytes, increased in number and displayed highly efficient rituximab-mediated antibody-dependent cellular cytotoxicity, almost equivalent to that exerted by NK cells. Notably, slan+ monocytes cultured in conditioned medium from nodal DLBCL (DCM) acquired a macrophage-like phenotype, retained CD16 expression, and became very efficient in rituximab-mediated antibody-dependent cellular phagocytosis (ADCP). Macrophages derived from DCM-treated CD14+ monocytes performed very efficient rituximab-mediated ADCP, however, using different FcγRs from those used by slan+ macrophages. Our observations shed new light on the complexity of the immune microenvironment of DLBCL and demonstrate plasticity of slan+ monocytes homing to cancer tissues. Altogether, data identify slan+ monocytes and macrophages as prominent effectors of antibody-mediated tumor cell targeting in patients with DLBCL.Significance: slan+ monocytes differentiate into macrophages that function as prominent effectors of antibody-mediated tumor cell targeting in lymphoma.

Slan+monocytes and macrophages mediate CD20-dependent b-cell lymphoma elimination via ADCC and ADCP

Zamó, Alberto;
2018-01-01

Abstract

Terminal tissue differentiation and function of slan+ monocytes in cancer is largely unexplored. Our recent studies demonstrated that slan+ monocytes differentiate into a distinct subset of dendritic cells (DC) in human tonsils and that slan+ cells colonize metastatic carcinoma-draining lymph nodes. Herein, we report by retrospective analysis of multi-institutional cohorts that slan+ cells infiltrate various types of non-Hodgkin lymphomas (NHL), particularly the diffuse large B-cell lymphoma (DLBCL) group, including the most aggressive, nodal and extranodal, forms. Nodal slan+ cells displayed features of either immature DC or macrophages, in the latter case ingesting tumor cells and apoptotic bodies. We also found in patients with DLBCL that peripheral blood slan+ monocytes, but not CD14+ monocytes, increased in number and displayed highly efficient rituximab-mediated antibody-dependent cellular cytotoxicity, almost equivalent to that exerted by NK cells. Notably, slan+ monocytes cultured in conditioned medium from nodal DLBCL (DCM) acquired a macrophage-like phenotype, retained CD16 expression, and became very efficient in rituximab-mediated antibody-dependent cellular phagocytosis (ADCP). Macrophages derived from DCM-treated CD14+ monocytes performed very efficient rituximab-mediated ADCP, however, using different FcγRs from those used by slan+ macrophages. Our observations shed new light on the complexity of the immune microenvironment of DLBCL and demonstrate plasticity of slan+ monocytes homing to cancer tissues. Altogether, data identify slan+ monocytes and macrophages as prominent effectors of antibody-mediated tumor cell targeting in patients with DLBCL.Significance: slan+ monocytes differentiate into macrophages that function as prominent effectors of antibody-mediated tumor cell targeting in lymphoma.
2018
78
13
3544
3559
http://cancerres.aacrjournals.org/content/78/13/3544.full-text.pdf
Oncology; Cancer Research
Vermi, William; Micheletti, Alessandra; Finotti, Giulia; Tecchio, Cristina; Calzetti, Federica; Costa, Sara; Bugatti, Mattia; Calza, Stefano; Agostine...espandi
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2318/1671370
Citazioni
  • ???jsp.display-item.citation.pmc??? 15
  • Scopus 31
  • ???jsp.display-item.citation.isi??? 29
social impact