Electrospun beta-cyclodextrin (βCD)-based polymers can combine a high surface-to-volume ratio and a high loading/controlled-release-system potential. In this work, pyromellitic dianhydride (PMDA)/βCD-based nanosponge microfibers were used to study the capability to host a common insect repellent (N,N-diethyl-3-toluamide (DEET)) and to monitor its release over time. Fibrous samples characterized by an average fibrous diameter of 2.8 ± 0.8 µm were obtained and subsequently loaded with DEET, starting from a 10 g/L diethyl ether (DEET) solution. The loading capacity of the system was assessed via HPLC/UV–Vis analysis and resulted in 130 mg/g. The releasing behavior was followed by leaving fibrous DEET-loaded nanosponge samples in air at room temperature for a period of between 24 h and 2 weeks. The releasing rate and the amount were calculated by thermogravimetric analysis (TGA), and the release of the repellent was found to last for over 2 weeks. Eventually, both the chemical composition and sample morphology were proven to play a key role for the high sample loading capacity, determining the microfibers’ capability to be applied as an effective controlled-release system.
Controlled Release of DEET Loaded on Fibrous Mats from Electrospun PMDA/Cyclodextrin Polymer
Claudio Cecone;Fabrizio Caldera;Francesco Trotta;Pierangiola Bracco;Marco Zanetti
2018-01-01
Abstract
Electrospun beta-cyclodextrin (βCD)-based polymers can combine a high surface-to-volume ratio and a high loading/controlled-release-system potential. In this work, pyromellitic dianhydride (PMDA)/βCD-based nanosponge microfibers were used to study the capability to host a common insect repellent (N,N-diethyl-3-toluamide (DEET)) and to monitor its release over time. Fibrous samples characterized by an average fibrous diameter of 2.8 ± 0.8 µm were obtained and subsequently loaded with DEET, starting from a 10 g/L diethyl ether (DEET) solution. The loading capacity of the system was assessed via HPLC/UV–Vis analysis and resulted in 130 mg/g. The releasing behavior was followed by leaving fibrous DEET-loaded nanosponge samples in air at room temperature for a period of between 24 h and 2 weeks. The releasing rate and the amount were calculated by thermogravimetric analysis (TGA), and the release of the repellent was found to last for over 2 weeks. Eventually, both the chemical composition and sample morphology were proven to play a key role for the high sample loading capacity, determining the microfibers’ capability to be applied as an effective controlled-release system.File | Dimensione | Formato | |
---|---|---|---|
2018 Cecone et al._2018_Controlled Release of DEET Loaded on Fibrous Mats from Electrospun PMDACyclodextrin Polymer_Molecules.pdf
Accesso aperto
Descrizione: PDF editoriale open access
Tipo di file:
PDF EDITORIALE
Dimensione
1.12 MB
Formato
Adobe PDF
|
1.12 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.