In this paper we use spline quasi-interpolating projectors on a bounded interval for the numerical solution of nonlinear integral equations. In particular, we propose a spline quasi-interpolating projection method with high order of convergence and a spline quasiinterpolating collocation method, both in case of smooth kernels and in case of Green’s function type ones. We explicitly construct the approximate solutions and we get results related to the convergence orders. Finally, we provide numerical tests, that confirm the theoretical results.

Spline quasi-interpolating projectors for the solution of nonlinear integral equations

Dagnino, C.;Remogna, S.
2019

Abstract

In this paper we use spline quasi-interpolating projectors on a bounded interval for the numerical solution of nonlinear integral equations. In particular, we propose a spline quasi-interpolating projection method with high order of convergence and a spline quasiinterpolating collocation method, both in case of smooth kernels and in case of Green’s function type ones. We explicitly construct the approximate solutions and we get results related to the convergence orders. Finally, we provide numerical tests, that confirm the theoretical results.
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS
354
360
372
Nonlinear integral equation; Spline projector; Spline quasi-interpolation
Dagnino, C.; Dallefrate, A.; Remogna, S.*
File in questo prodotto:
File Dimensione Formato  
DDR_19_06_18.pdf

embargo fino al 07/07/2020

Tipo di file: POSTPRINT (VERSIONE FINALE DELL’AUTORE)
Dimensione 211.35 kB
Formato Adobe PDF
211.35 kB Adobe PDF Visualizza/Apri
1-s2.0-S0377042718304151-main.pdf

non disponibili

Tipo di file: PDF EDITORIALE
Dimensione 360.83 kB
Formato Adobe PDF
360.83 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: http://hdl.handle.net/2318/1671641
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 5
  • ???jsp.display-item.citation.isi??? 4
social impact