Targeted agents have completely changed cancer treatment strategy, leading it from a "one size fits all" approach to a customized therapy. In this scenario Met, a heterodimere receptor tyrosine kinase deeply involved into embryogenesis and organogenesis, has been introduced many years ago as a potential target for biological agents, becoming "druggable" only in this last period of time. Met can be altered through receptor overexpression, genomic amplification, mutations or alternative splicing, autocrine or paracrine secretion of hepatic growth factor (HGF): these dysregulations stimulate tumorigenesis (in terms of cell-cell detachment, proliferation, invasion, angiogenesis and survival) and metastatization. Met is overexpressed in lung cancer and Met gene amplification can drive the dependency of cell survival and proliferation upon the Met signaling. Both Met overexpression and amplification seem to correlate with poor prognosis. Met amplification is also described to be linked to EGFR acquired resistance. Several Met inhibitors have been tested both in preclinical and human trials, demonstrating activity in lung cancer treatment. This paper aims to summarize data on Met biological function, on its interaction with cell signaling and other pathways and to present data on those Met inhibitors currently under evaluation. © Translational lung cancer research. All rights reserved.

MET inhibition in lung cancer

Levra M. G.;Novello S.
2013-01-01

Abstract

Targeted agents have completely changed cancer treatment strategy, leading it from a "one size fits all" approach to a customized therapy. In this scenario Met, a heterodimere receptor tyrosine kinase deeply involved into embryogenesis and organogenesis, has been introduced many years ago as a potential target for biological agents, becoming "druggable" only in this last period of time. Met can be altered through receptor overexpression, genomic amplification, mutations or alternative splicing, autocrine or paracrine secretion of hepatic growth factor (HGF): these dysregulations stimulate tumorigenesis (in terms of cell-cell detachment, proliferation, invasion, angiogenesis and survival) and metastatization. Met is overexpressed in lung cancer and Met gene amplification can drive the dependency of cell survival and proliferation upon the Met signaling. Both Met overexpression and amplification seem to correlate with poor prognosis. Met amplification is also described to be linked to EGFR acquired resistance. Several Met inhibitors have been tested both in preclinical and human trials, demonstrating activity in lung cancer treatment. This paper aims to summarize data on Met biological function, on its interaction with cell signaling and other pathways and to present data on those Met inhibitors currently under evaluation. © Translational lung cancer research. All rights reserved.
2013
2
1
23
39
Menis, J., Levra, M.G., Novello, S.
File in questo prodotto:
File Dimensione Formato  
1451.pdf

Accesso aperto

Tipo di file: PDF EDITORIALE
Dimensione 266.6 kB
Formato Adobe PDF
266.6 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2318/1675627
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 17
  • ???jsp.display-item.citation.isi??? ND
social impact