Given a Kähler manifold (Z, J, ω) and a compact real submanifold M ⊂ Z, we study the properties of the gradient map associated with the action of a noncompact real reductive Lie group G on the space of probability measures on M. In particular, we prove convexity results for such map when G is Abelian and we investigate how to extend them to the non-Abelian case.

Convexity theorems for the gradient map on probability measures

Raffero, Alberto
2018

Abstract

Given a Kähler manifold (Z, J, ω) and a compact real submanifold M ⊂ Z, we study the properties of the gradient map associated with the action of a noncompact real reductive Lie group G on the space of probability measures on M. In particular, we prove convexity results for such map when G is Abelian and we investigate how to extend them to the non-Abelian case.
5
1
133
145
https://www.degruyter.com/view/j/coma.2018.5.issue-1/coma-2018-0008/coma-2018-0008.xml
Gradient map, Probability measures, Convexity
Biliotti, Leonardo*; Raffero, Alberto
File in questo prodotto:
File Dimensione Formato  
Convexity theorems for the gradient map on probability measures.pdf

Accesso aperto con embargo fino al 05/07/2019

Descrizione: articolo
Tipo di file: PDF EDITORIALE
Dimensione 512.94 kB
Formato Adobe PDF
512.94 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2318/1676270
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 4
  • ???jsp.display-item.citation.isi??? 2
social impact