Let $F$ be an integral linear recurrence, $G$ be an integer-valued polynomial splitting over the rationals, and $h$ be a positive integer. Also, let $mathcal{A}_{F,G,h}$ be the set of all natural numbers $n$ such that $gcd(F(n), G(n)) = h$. We prove that $mathcal{A}_{F,G,h}$ has a natural density. Moreover, assuming $F$ is non-degenerate and $G$ has no fixed divisors, we show that $mathbf{d}(mathcal{A}_{F,G,1}) = 0$ if and only if $mathcal{A}_{F,G,1}$ is finite.

On numbers n with polynomial image coprime with the nth term of a linear recurrence

SANNA, CARLO
2019-01-01

Abstract

Let $F$ be an integral linear recurrence, $G$ be an integer-valued polynomial splitting over the rationals, and $h$ be a positive integer. Also, let $mathcal{A}_{F,G,h}$ be the set of all natural numbers $n$ such that $gcd(F(n), G(n)) = h$. We prove that $mathcal{A}_{F,G,h}$ has a natural density. Moreover, assuming $F$ is non-degenerate and $G$ has no fixed divisors, we show that $mathbf{d}(mathcal{A}_{F,G,1}) = 0$ if and only if $mathcal{A}_{F,G,1}$ is finite.
2019
99
1
23
33
MASTROSTEFANO, DANIELE; SANNA, CARLO
File in questo prodotto:
File Dimensione Formato  
MastrostefanoSanna.pdf

Accesso aperto

Tipo di file: POSTPRINT (VERSIONE FINALE DELL’AUTORE)
Dimensione 335.96 kB
Formato Adobe PDF
335.96 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2318/1676274
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 4
  • ???jsp.display-item.citation.isi??? 3
social impact