Let $F$ be an integral linear recurrence, $G$ be an integer-valued polynomial splitting over the rationals, and $h$ be a positive integer. Also, let $mathcal{A}_{F,G,h}$ be the set of all natural numbers $n$ such that $gcd(F(n), G(n)) = h$. We prove that $mathcal{A}_{F,G,h}$ has a natural density. Moreover, assuming $F$ is non-degenerate and $G$ has no fixed divisors, we show that $mathbf{d}(mathcal{A}_{F,G,1}) = 0$ if and only if $mathcal{A}_{F,G,1}$ is finite.
On numbers n with polynomial image coprime with the nth term of a linear recurrence
SANNA, CARLO
2019-01-01
Abstract
Let $F$ be an integral linear recurrence, $G$ be an integer-valued polynomial splitting over the rationals, and $h$ be a positive integer. Also, let $mathcal{A}_{F,G,h}$ be the set of all natural numbers $n$ such that $gcd(F(n), G(n)) = h$. We prove that $mathcal{A}_{F,G,h}$ has a natural density. Moreover, assuming $F$ is non-degenerate and $G$ has no fixed divisors, we show that $mathbf{d}(mathcal{A}_{F,G,1}) = 0$ if and only if $mathcal{A}_{F,G,1}$ is finite.File in questo prodotto:
File | Dimensione | Formato | |
---|---|---|---|
MastrostefanoSanna.pdf
Accesso aperto
Tipo di file:
POSTPRINT (VERSIONE FINALE DELL’AUTORE)
Dimensione
335.96 kB
Formato
Adobe PDF
|
335.96 kB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.