The \emph{quotient set}, or \emph{ratio set}, of a set of integers $A$ is defined as \begin{equation*} R(A) := \left\{a/b : a,b \in A,\; b \neq 0\right\} . \end{equation*} We consider the case in which $A$ is the image of $\mathbb{Z}^+$ under a polynomial $f \in \mathbb{Z}[X]$, and we give some conditions under which $R(A)$ is dense in $\mathbb{Q}_p$. Then, we apply these results to determine when $R(S_m^n)$ is dense in $\mathbb{Q}_p$, where $S_m^n$ is the set of numbers of the form $x_1^n + \cdots + x_m^n$, with $x_1, \dots, x_m \geq 0$ integers. This allows us to answer a question posed in [Garcia \textit{et~al.}, $p$-adic quotient sets, Acta Arith.~\textbf{179}, 163--184]. We end leaving an open question.

### On the p-adic denseness of the quotient set of a polynomial image

#### Abstract

The \emph{quotient set}, or \emph{ratio set}, of a set of integers $A$ is defined as \begin{equation*} R(A) := \left\{a/b : a,b \in A,\; b \neq 0\right\} . \end{equation*} We consider the case in which $A$ is the image of $\mathbb{Z}^+$ under a polynomial $f \in \mathbb{Z}[X]$, and we give some conditions under which $R(A)$ is dense in $\mathbb{Q}_p$. Then, we apply these results to determine when $R(S_m^n)$ is dense in $\mathbb{Q}_p$, where $S_m^n$ is the set of numbers of the form $x_1^n + \cdots + x_m^n$, with $x_1, \dots, x_m \geq 0$ integers. This allows us to answer a question posed in [Garcia \textit{et~al.}, $p$-adic quotient sets, Acta Arith.~\textbf{179}, 163--184]. We end leaving an open question.
##### Scheda breve Scheda completa Scheda completa (DC) 197
218
227
Miska, Piotr; Murru, Nadir; Sanna, Carlo
File in questo prodotto:
File
temp.pdf

Accesso aperto

Tipo di file: POSTPRINT (VERSIONE FINALE DELL’AUTORE)
Dimensione 279.32 kB
jnt.pdf

Accesso riservato

Tipo di file: PDF EDITORIALE
Dimensione 304.86 kB
Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2318/1676865
• ND
• 5
• 5