Joint incongruity in posteromedial rotatory instability (PMRI) has been theorized to determine early articular degenerative changes. Our hypothesis was that the articular contact area and contact pressure differ significantly between an intact elbow and an elbow affected by PMRI. METHODS: Seven cadaveric elbows were tested under gravity varus stress using a custom-made machine designed to simulate muscle loads and allow passive elbow flexion (0° to 90°). The mean contact area and contact pressure data were collected and processed using the Tekscan sensor and software. After testing the intact specimen (intact elbow), a PMRI injury was simulated (PMRI elbow) and the specimen was tested again. RESULTS: The PMRI elbows were characterized by initial joint subluxation and significantly elevated articular contact pressure. Both worsened, corresponding with a reduction in contact area, as the elbow was flexed from 0° until the joint subluxation and incongruity spontaneously reduced (at a mean [and standard error] of 60° ± 5° of flexion), at which point the mean contact pressure decreased from 870 ± 50 kPa (pre-reduction) to 440 ± 40 kPa (post-reduction) (p < 0.001) and the mean contact area increased from 80 ± 8 mm to 150 ± 58 mm (p < 0.001). This reduction of the subluxation was also followed by a shift of the contact area from the coronoid fracture edge toward the lower portion of the coronoid. At the flexion angle at which the PMRI elbows reduced, both the contact area and the contact pressure of the intact elbows differed significantly from those of the PMRI elbows, both before and after the elbow reduction (p < 0.001). CONCLUSIONS: The reduction in contact area and increased contact pressures due to joint subluxation and incongruity could explain the progressive arthritis seen in some elbows affected by PMRI. CLINICAL RELEVANCE: This biomechanical study suggests that the early degenerative changes associated with PMRI reported in the literature could be subsequent to joint incongruity and an increase in contact pressure between the coronoid fracture surface and the trochlea.

Articular Contact Area and Pressure in Posteromedial Rotatory Instability of the Elbow

Bellato, E
First
;
2018-01-01

Abstract

Joint incongruity in posteromedial rotatory instability (PMRI) has been theorized to determine early articular degenerative changes. Our hypothesis was that the articular contact area and contact pressure differ significantly between an intact elbow and an elbow affected by PMRI. METHODS: Seven cadaveric elbows were tested under gravity varus stress using a custom-made machine designed to simulate muscle loads and allow passive elbow flexion (0° to 90°). The mean contact area and contact pressure data were collected and processed using the Tekscan sensor and software. After testing the intact specimen (intact elbow), a PMRI injury was simulated (PMRI elbow) and the specimen was tested again. RESULTS: The PMRI elbows were characterized by initial joint subluxation and significantly elevated articular contact pressure. Both worsened, corresponding with a reduction in contact area, as the elbow was flexed from 0° until the joint subluxation and incongruity spontaneously reduced (at a mean [and standard error] of 60° ± 5° of flexion), at which point the mean contact pressure decreased from 870 ± 50 kPa (pre-reduction) to 440 ± 40 kPa (post-reduction) (p < 0.001) and the mean contact area increased from 80 ± 8 mm to 150 ± 58 mm (p < 0.001). This reduction of the subluxation was also followed by a shift of the contact area from the coronoid fracture edge toward the lower portion of the coronoid. At the flexion angle at which the PMRI elbows reduced, both the contact area and the contact pressure of the intact elbows differed significantly from those of the PMRI elbows, both before and after the elbow reduction (p < 0.001). CONCLUSIONS: The reduction in contact area and increased contact pressures due to joint subluxation and incongruity could explain the progressive arthritis seen in some elbows affected by PMRI. CLINICAL RELEVANCE: This biomechanical study suggests that the early degenerative changes associated with PMRI reported in the literature could be subsequent to joint incongruity and an increase in contact pressure between the coronoid fracture surface and the trochlea.
2018
100
6
1
9
Bellato, E; Fitzsimmons, JS; Kim, Y;, Bachman, DR; Berglund, LJ; Hooke, AW; O'Driscoll, SW
File in questo prodotto:
File Dimensione Formato  
Articular Contact Area and Pressure in Posteromedial Rotatory Instability of the Elbow.pdf

Accesso riservato

Tipo di file: PDF EDITORIALE
Dimensione 1.45 MB
Formato Adobe PDF
1.45 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2318/1678805
Citazioni
  • ???jsp.display-item.citation.pmc??? 9
  • Scopus 24
  • ???jsp.display-item.citation.isi??? 19
social impact