Land use science usually adopts a case study approach to investigate landscape change processes, so we considered a meta-analysis an appropriate tool for summarizing general patterns and heterogeneous findings across multiple case studies over a large geographic area. Mountain landscapes in the Apennines (Italy) have undergone significant variations in the last century due to regional and national socio-economic changes. In this work, we reviewed 51 manuscripts from different databases and examined 57 case studies. We explored heterogeneous data sets, adopting a stepwise approach to select the case studies: Step 1, a general overview of the main studies; Step 2, an analysis of the features of the study sites and of land-use/cover transitions; Step 3, a landscape pattern analysis. We standardized the processing methods to obtain a new set of homogeneous data suitable for comparative analysis. After some pre-processing of the selected paper due to the broad heterogeneity of the data, we calculated common landscape metrics ex novo. We obtained digital images used to perform automatic segmentation with eCognition Developer 64 software. Our review indicated that most case studies were in Central and Southern Italy, 83% were examined at local scale, 77% carried out change detection, but only 38% included both change detection and landscape spatial pattern analysis. The results revealed a clear trend of forest expansion (+78%) and the reduction of croplands (-49%) and grasslands (-19%). We did not find significant changes in the landscape spatial patterns.

70 years of land use/land cover changes in the apennines (Italy): A meta-analysis

Garbarino, Matteo
Last
2018-01-01

Abstract

Land use science usually adopts a case study approach to investigate landscape change processes, so we considered a meta-analysis an appropriate tool for summarizing general patterns and heterogeneous findings across multiple case studies over a large geographic area. Mountain landscapes in the Apennines (Italy) have undergone significant variations in the last century due to regional and national socio-economic changes. In this work, we reviewed 51 manuscripts from different databases and examined 57 case studies. We explored heterogeneous data sets, adopting a stepwise approach to select the case studies: Step 1, a general overview of the main studies; Step 2, an analysis of the features of the study sites and of land-use/cover transitions; Step 3, a landscape pattern analysis. We standardized the processing methods to obtain a new set of homogeneous data suitable for comparative analysis. After some pre-processing of the selected paper due to the broad heterogeneity of the data, we calculated common landscape metrics ex novo. We obtained digital images used to perform automatic segmentation with eCognition Developer 64 software. Our review indicated that most case studies were in Central and Southern Italy, 83% were examined at local scale, 77% carried out change detection, but only 38% included both change detection and landscape spatial pattern analysis. The results revealed a clear trend of forest expansion (+78%) and the reduction of croplands (-49%) and grasslands (-19%). We did not find significant changes in the landscape spatial patterns.
2018
9
9
551
565
http://www.mdpi.com/1999-4907/9/9/551/pdf
Crop land abandonment; Cultural landscapes; LULCC; New forests; Review; Silvo-pastoral systems; Forestry
Malandra, Francesco*; Vitali, Alessandro; Urbinati, Carlo; Garbarino, Matteo
File in questo prodotto:
File Dimensione Formato  
2018_malandraetal_Forests.pdf

Accesso aperto

Descrizione: PDF Definitivo Open Access
Tipo di file: PDF EDITORIALE
Dimensione 4.08 MB
Formato Adobe PDF
4.08 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2318/1679490
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 35
  • ???jsp.display-item.citation.isi??? 32
social impact