Rock glaciers (RG) are assumed to influence the biogeochemistry of downstream ecosystems because of the high ratio of rock:water in those systems, but no studies have considered the effects of a RG inflow on the microbial ecology of sediments in a downstream pond. An alpine RG-pond system, located in the NW Italian Alps has been chosen as a model, and Bacteria and Archaea 16S rRNA genes abundance, distribution and diversity have been assessed by qPCR and Illumina sequencing, coupled with geochemical analyses on sediments collected along a distance gradient from the RG inflow. RG surface material and neighbouring soil have been included in the analysis to better elucidate relationships among different habitats. Our results showed that different habitats harboured different, well separated microbial assemblages. Across the pond, the main variations in community composition (e.g. Thaumarchaeota and Cyanobacteria relative abundance) and porewater geochemistry (pH, DOC, TDN and NH4+) were not directly linked to RG proximity, but to differences in water depth. Some microbial markers potentially linked to the presence of meltwater inputs from the RG have been recognised, although the RG seems to have a greater influence on the pond microbial communities due to its contribution in terms of sedimentary material.

Prokaryotic Diversity and Distribution in Different Habitats of an Alpine Rock Glacier-Pond System

Ilaria Mania;Roberta Gorra;Nicola Colombo;Michele Freppaz;Maria Martin;
2019-01-01

Abstract

Rock glaciers (RG) are assumed to influence the biogeochemistry of downstream ecosystems because of the high ratio of rock:water in those systems, but no studies have considered the effects of a RG inflow on the microbial ecology of sediments in a downstream pond. An alpine RG-pond system, located in the NW Italian Alps has been chosen as a model, and Bacteria and Archaea 16S rRNA genes abundance, distribution and diversity have been assessed by qPCR and Illumina sequencing, coupled with geochemical analyses on sediments collected along a distance gradient from the RG inflow. RG surface material and neighbouring soil have been included in the analysis to better elucidate relationships among different habitats. Our results showed that different habitats harboured different, well separated microbial assemblages. Across the pond, the main variations in community composition (e.g. Thaumarchaeota and Cyanobacteria relative abundance) and porewater geochemistry (pH, DOC, TDN and NH4+) were not directly linked to RG proximity, but to differences in water depth. Some microbial markers potentially linked to the presence of meltwater inputs from the RG have been recognised, although the RG seems to have a greater influence on the pond microbial communities due to its contribution in terms of sedimentary material.
2019
78
1
70
84
Rock glacier, alpine pond, sediments, microbial ecology, 16S rRNA
Ilaria Mania, Roberta Gorra, Nicola Colombo, Michele Freppaz, Maria Martin, Anesio A. M.
File in questo prodotto:
File Dimensione Formato  
Mania et al. 2018, postprint.pdf

Accesso aperto

Tipo di file: POSTPRINT (VERSIONE FINALE DELL’AUTORE)
Dimensione 1.8 MB
Formato Adobe PDF
1.8 MB Adobe PDF Visualizza/Apri
Mania et al., 2018.pdf

Accesso riservato

Descrizione: Articolo principale
Tipo di file: PDF EDITORIALE
Dimensione 3.12 MB
Formato Adobe PDF
3.12 MB Adobe PDF   Visualizza/Apri   Richiedi una copia
Mania et al., 2019 (Gorra).pdf

Accesso riservato

Tipo di file: PDF EDITORIALE
Dimensione 2.94 MB
Formato Adobe PDF
2.94 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2318/1679515
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 15
  • ???jsp.display-item.citation.isi??? 15
social impact