The study aimed at determining ammonia and GHG emissions from soil fertilized with pellets made from composted pig slurry solid fraction and to evaluate the effects of pellet diameter and pellet application method on gaseous emissions. A laboratory scale experiment was carried out investigating two composts: pig slurry solid fraction compost (SSFC) and pig slurry solid fraction mixed with wood chips compost (WCC). The two composts were pelettized in two different diameters—6 and 8 mm—by means of mechanical pelletizer. In total, eight fertilized treatments plus one unfertilized control were included in the experiment. The investigated pellets were applied at the same nitrogen rate (equivalent to 200 kg ha−1) using two different methods (on soil surface and incorporated into the soil). Ammonia (NH3) emission was monitored immediately after pellet application, while nitrous oxide (N2O), carbon dioxide (CO2) and methane (CH4) were measured on a 57-day incubation period. As expected, ammonia volatilization was not detected from any of the treatments investigated. At the end of the experiment, the cumulative amounts of N2O, CO2 and CH4 ranged from 2.70 mg N-N2O m−2 to 24.30 mg N-N2O m−2, from 601.89 mg C-CO2 m−2 to 1170.34 mg C-CO2 m−2 and from 1.22 mg C-CH4 m−2 to 1.31 mg C-CH4 m−2, respectively. The overall results of the investigation highlighted that application on the soil surface reduced nitrous oxide emission, while the carbon dioxide emission increased significantly with smaller pellet diameter.

Gaseous emissions after soil application of pellet made from composted pig slurry solid fraction: Effect of application method and pellet diameter

Pampuro, Niccolò;Busato, Patrizia;Cavallo, Eugenio
2018-01-01

Abstract

The study aimed at determining ammonia and GHG emissions from soil fertilized with pellets made from composted pig slurry solid fraction and to evaluate the effects of pellet diameter and pellet application method on gaseous emissions. A laboratory scale experiment was carried out investigating two composts: pig slurry solid fraction compost (SSFC) and pig slurry solid fraction mixed with wood chips compost (WCC). The two composts were pelettized in two different diameters—6 and 8 mm—by means of mechanical pelletizer. In total, eight fertilized treatments plus one unfertilized control were included in the experiment. The investigated pellets were applied at the same nitrogen rate (equivalent to 200 kg ha−1) using two different methods (on soil surface and incorporated into the soil). Ammonia (NH3) emission was monitored immediately after pellet application, while nitrous oxide (N2O), carbon dioxide (CO2) and methane (CH4) were measured on a 57-day incubation period. As expected, ammonia volatilization was not detected from any of the treatments investigated. At the end of the experiment, the cumulative amounts of N2O, CO2 and CH4 ranged from 2.70 mg N-N2O m−2 to 24.30 mg N-N2O m−2, from 601.89 mg C-CO2 m−2 to 1170.34 mg C-CO2 m−2 and from 1.22 mg C-CH4 m−2 to 1.31 mg C-CH4 m−2, respectively. The overall results of the investigation highlighted that application on the soil surface reduced nitrous oxide emission, while the carbon dioxide emission increased significantly with smaller pellet diameter.
2018
8
119
1
11
http://www.mdpi.com/2077-0472/8/8/119/pdf
Ammonia; Composting; GHG; Pelletizing; Pig manure; Food Science; Agronomy and Crop Science; Plant Science
Pampuro, Niccolò; Busato, Patrizia; Cavallo, Eugenio*
File in questo prodotto:
File Dimensione Formato  
059.Gaseous Emissions after Soil Application of Pellet Made from Composted Pig Slurry Solid Fraction Effect of Application Method and Pellet Diameter.pdf

Accesso aperto

Descrizione: pdf editoriale
Tipo di file: PDF EDITORIALE
Dimensione 1.18 MB
Formato Adobe PDF
1.18 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2318/1679831
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 10
  • ???jsp.display-item.citation.isi??? 9
social impact