With the advent of novel genomic and transcriptomic technologies, new urinary biomarkers have been identified and tested for bladder cancer (BCa) surveillance. To summarize the current status of urinary biomarkers for the detection of recurrence and/or progression in the follow-up of non-muscle invasive BCa patients, and to assess the value of urinary biomarkers in predicting response to intravesical Bacillus Calmette-Guerin (BCG) therapy. METHODS AND MATERIALS: A medline/pubmed© literature search was performed. The performance of commercially available and investigational biomarkers has been reviewed. End points were cancer detection (recurrence), cancer progression, and response to BCG therapy. RESULTS: The performance requirements for biomarkers are variable according to the clinical scenario. The clinical role of urinary biomarkers in the follow-up of non-muscle invasive BCa patients remains undefined. The FDA-approved tests provide unsatisfactory sensitivity and specificity levels and their use is limited. Fluorescence in situ hybridization (FISH) has been shown to be useful in specific scenarios, mostly as a reflex test and in the setting of equivocal urinary cytology. FISH and immunocytology could conceivably be used to assess BCG response. Recently developed biomarkers have shown promising results; upcoming large trials will test their utility in specific clinical scenarios in a manner similar to a phased drug development strategy. CONCLUSIONS: Current commercially available urinary biomarker-based tests are not sufficiently validated to be widely used in clinical practice. Several novel biomarkers are currently under investigation. Prospective multicenter analyses will be needed to establish their clinical relevance and value.
An up-to-date catalog of available urinary biomarkers for the surveillance of non-muscle invasive bladder cancer
Soria, Francesco
First
;Gontero, Paolo;
2018-01-01
Abstract
With the advent of novel genomic and transcriptomic technologies, new urinary biomarkers have been identified and tested for bladder cancer (BCa) surveillance. To summarize the current status of urinary biomarkers for the detection of recurrence and/or progression in the follow-up of non-muscle invasive BCa patients, and to assess the value of urinary biomarkers in predicting response to intravesical Bacillus Calmette-Guerin (BCG) therapy. METHODS AND MATERIALS: A medline/pubmed© literature search was performed. The performance of commercially available and investigational biomarkers has been reviewed. End points were cancer detection (recurrence), cancer progression, and response to BCG therapy. RESULTS: The performance requirements for biomarkers are variable according to the clinical scenario. The clinical role of urinary biomarkers in the follow-up of non-muscle invasive BCa patients remains undefined. The FDA-approved tests provide unsatisfactory sensitivity and specificity levels and their use is limited. Fluorescence in situ hybridization (FISH) has been shown to be useful in specific scenarios, mostly as a reflex test and in the setting of equivocal urinary cytology. FISH and immunocytology could conceivably be used to assess BCG response. Recently developed biomarkers have shown promising results; upcoming large trials will test their utility in specific clinical scenarios in a manner similar to a phased drug development strategy. CONCLUSIONS: Current commercially available urinary biomarker-based tests are not sufficiently validated to be widely used in clinical practice. Several novel biomarkers are currently under investigation. Prospective multicenter analyses will be needed to establish their clinical relevance and value.File | Dimensione | Formato | |
---|---|---|---|
An up‑to‑date catalog of available urinary biomarkers for the surveillance of non‑muscle invasive bladder cancer.pdf
Accesso aperto
Tipo di file:
PDF EDITORIALE
Dimensione
1.03 MB
Formato
Adobe PDF
|
1.03 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.