The paper presents the topic modeling technique known as Latent Dirichlet Allocation (LDA), a form of text-mining aiming at discovering the hidden (latent) thematic structure in large archives of documents. By applying LDA to the full text of the economics articles stored in the JSTOR database, we show how to construct a map of the discipline over time, and illustrate the potentialities of the technique for the study of the shifting structure of economics in a time of (possible) fragmentation.

What topic modeling could reveal about the evolution of economics

Angela Ambrosino;Mario Cedrini;Stefano Fiori;Marco Guerzoni;NUCCIO, Massimiliano
2018-01-01

Abstract

The paper presents the topic modeling technique known as Latent Dirichlet Allocation (LDA), a form of text-mining aiming at discovering the hidden (latent) thematic structure in large archives of documents. By applying LDA to the full text of the economics articles stored in the JSTOR database, we show how to construct a map of the discipline over time, and illustrate the potentialities of the technique for the study of the shifting structure of economics in a time of (possible) fragmentation.
2018
25
4
329
348
Topic modeling; economics as science; economics literature; text analysis
Angela Ambrosino, Mario Cedrini, John B. Davis, Stefano Fiori, Marco Guerzoni, Massimiliano Nuccio
File in questo prodotto:
File Dimensione Formato  
What topic modeling could reveal about the evolution of economics.pdf

Accesso riservato

Descrizione: Articolo principale
Tipo di file: PDF EDITORIALE
Dimensione 2.88 MB
Formato Adobe PDF
2.88 MB Adobe PDF   Visualizza/Apri   Richiedi una copia
Guerzoni_What_topic_modeling_could_reveal_about_the_evolution_of_economics (2).pdf

Accesso riservato

Tipo di file: PDF EDITORIALE
Dimensione 2.88 MB
Formato Adobe PDF
2.88 MB Adobe PDF   Visualizza/Apri   Richiedi una copia
JEM article final-1.pdf

Accesso aperto

Tipo di file: POSTPRINT (VERSIONE FINALE DELL’AUTORE)
Dimensione 1.52 MB
Formato Adobe PDF
1.52 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2318/1682858
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 51
  • ???jsp.display-item.citation.isi??? 45
social impact