Given a minimal Lagrangian submanifold L in a negative Kähler–Einstein manifold M, we show that any small Kähler–Einstein perturbation of M induces a deformation of L which is minimal Lagrangian with respect to the new structure. This provides a new source of examples of minimal Lagrangians. More generally, the same is true for the larger class of totally real J-minimal submanifolds in Kähler manifolds with negative definite Ricci curvature.

From minimal Lagrangian to J-minimal submanifolds: persistence and uniqueness

Pacini, Tommaso
2019-01-01

Abstract

Given a minimal Lagrangian submanifold L in a negative Kähler–Einstein manifold M, we show that any small Kähler–Einstein perturbation of M induces a deformation of L which is minimal Lagrangian with respect to the new structure. This provides a new source of examples of minimal Lagrangians. More generally, the same is true for the larger class of totally real J-minimal submanifolds in Kähler manifolds with negative definite Ricci curvature.
2019
12
1-2
63
82
http://www.springer.com/mathematics/journal/40574
Mathematics (all)
Lotay, Jason D.; Pacini, Tommaso*
File in questo prodotto:
File Dimensione Formato  
persistence_arxiv.pdf

Accesso aperto

Tipo di file: PREPRINT (PRIMA BOZZA)
Dimensione 277.93 kB
Formato Adobe PDF
277.93 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2318/1684428
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 5
  • ???jsp.display-item.citation.isi??? 4
social impact