In this paper, we introduce a model to study the effects of human populations on fish survival in aquatic media. Directly, this occurs by fishing. Indirectly instead this is related to other human actions that lead to organic pollution and consequently low dissolved oxygen(DO) levels, thereby harming the aquatic fauna. Mathematically, we consider various nonlinear processes involving human population, organic pollutants, bacteria, DO and fish population. In the present study, our aim is to investigate the effect of depleted level of DO on the survival of fish populations in such an aquatic system. The case study in consideration is represented by the Ulsoor lake, Bengaluru, India. Into it, huge amounts of sewage were discharged and resulted in reduction of DO level and massive fish mortality. Equilibria are analyzed for feasibility and stability, substantiated via ∗Corresponding author. 1 J. Biol. Syst. Downloaded from www.worldscientific.com by INDIAN STATISTICAL INSTITUTE, KOLKATA on 01/09/19. Re-use and distribution is strictly not permitted, except for Open Access articles. 2 Tiwari et al. numerical simulations. Global sensitivity analysis identifies the important parameters having a significant impact on the fish population. The Partial Rank Correlation Coefficients (PRCCs) values of fish population in the lake with respect to input parameters of the system show that the growth rate of humans in the lake watershed has maximum negative correlation while the growth in the fish population due to DO has maximum positive correlation with the density of fish population in the lake. The results show that increase in human population may decrease fish population in the system to very low values. However, by controlling additional dissolved organic loads coming from domestic sewage, farm waste and many other sources, the level of DO can be brought back to values that allow fish survival. Maintaining it at these levels would preserve the ecosystem.

HUMAN POPULATION EFFECTS ON THE ULSOOR LAKE FISH SURVIVAL

TIWARI, Pankaj Kumar;BONA, FRANCESCA;VENTURINO, EZIO;
2018

Abstract

In this paper, we introduce a model to study the effects of human populations on fish survival in aquatic media. Directly, this occurs by fishing. Indirectly instead this is related to other human actions that lead to organic pollution and consequently low dissolved oxygen(DO) levels, thereby harming the aquatic fauna. Mathematically, we consider various nonlinear processes involving human population, organic pollutants, bacteria, DO and fish population. In the present study, our aim is to investigate the effect of depleted level of DO on the survival of fish populations in such an aquatic system. The case study in consideration is represented by the Ulsoor lake, Bengaluru, India. Into it, huge amounts of sewage were discharged and resulted in reduction of DO level and massive fish mortality. Equilibria are analyzed for feasibility and stability, substantiated via ∗Corresponding author. 1 J. Biol. Syst. Downloaded from www.worldscientific.com by INDIAN STATISTICAL INSTITUTE, KOLKATA on 01/09/19. Re-use and distribution is strictly not permitted, except for Open Access articles. 2 Tiwari et al. numerical simulations. Global sensitivity analysis identifies the important parameters having a significant impact on the fish population. The Partial Rank Correlation Coefficients (PRCCs) values of fish population in the lake with respect to input parameters of the system show that the growth rate of humans in the lake watershed has maximum negative correlation while the growth in the fish population due to DO has maximum positive correlation with the density of fish population in the lake. The results show that increase in human population may decrease fish population in the system to very low values. However, by controlling additional dissolved organic loads coming from domestic sewage, farm waste and many other sources, the level of DO can be brought back to values that allow fish survival. Maintaining it at these levels would preserve the ecosystem.
26
4
1
30
Mathematical Model, Human Population, Organic Pollutants, Dissolved Oxygen, Aquaculture, Ulsoor Lake, Stabilit, Global Sensitivity
TIWARI, PANKAJ KUMAR; BULAI, IULIA MARTINA; BONA, FRANCESCA; VENTURINO, EZIO; MISRA, ARVIND KUMAR
File in questo prodotto:
File Dimensione Formato  
WSPC-JBS-S-18-00232x iris.pdf

Accesso aperto

Tipo di file: PREPRINT (PRIMA BOZZA)
Dimensione 1.73 MB
Formato Adobe PDF
1.73 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: http://hdl.handle.net/2318/1686280
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 2
  • ???jsp.display-item.citation.isi??? 2
social impact