We predicted the possible direct and indirect phototransformation kinetics of carbamazepine (CBZ), ibuprofen (IBU) and diclofenac (DIC) in river water, based on data of water chemistry obtained for the Guadiana River near Badajoz (Southwestern Spain) during a year-round sampling campaign. The three compounds were chosen, (i) because they occurred at the outlet of the wastewater treatment plant (WWTP) in Badajoz, as well as in river water sampled 1 km downstream of the WWTP, and (ii) because their photochemical fate in surface waters is known well enough to be modelled. The modelled phototransformation kinetics would be negligible in winter and fastest in April-August, with comparable rate constants in April through August despite differences in sunlight irradiance. Favourable water chemistry would in fact offset the lower irradiance, and vice versa. Half-life times of at least three weeks - one month are predicted for CBZ and IBU. Photodegradation may be an important attenuation pathway for biorecalcitrant CBZ, while IBU photochemistry is unlikely to be competitive with other processes including biodegradation. The predicted DIC photochemical half-life times of 7-10 days in April-August would be comparable with the biodegradation kinetics data reported in the literature. Photochemistry might not induce extensive phototransformation of xenobiotics in the Guadiana River under normal flow conditions, but it could become important in the case of low flow produced by water scarcity.

A model assessment of the potential of river water to induce the photochemical attenuation of pharmaceuticals downstream of a wastewater treatment plant (Guadiana River, Badajoz, Spain)

Davide Vione;Debora Fabbri;Paola Calza
2018-01-01

Abstract

We predicted the possible direct and indirect phototransformation kinetics of carbamazepine (CBZ), ibuprofen (IBU) and diclofenac (DIC) in river water, based on data of water chemistry obtained for the Guadiana River near Badajoz (Southwestern Spain) during a year-round sampling campaign. The three compounds were chosen, (i) because they occurred at the outlet of the wastewater treatment plant (WWTP) in Badajoz, as well as in river water sampled 1 km downstream of the WWTP, and (ii) because their photochemical fate in surface waters is known well enough to be modelled. The modelled phototransformation kinetics would be negligible in winter and fastest in April-August, with comparable rate constants in April through August despite differences in sunlight irradiance. Favourable water chemistry would in fact offset the lower irradiance, and vice versa. Half-life times of at least three weeks - one month are predicted for CBZ and IBU. Photodegradation may be an important attenuation pathway for biorecalcitrant CBZ, while IBU photochemistry is unlikely to be competitive with other processes including biodegradation. The predicted DIC photochemical half-life times of 7-10 days in April-August would be comparable with the biodegradation kinetics data reported in the literature. Photochemistry might not induce extensive phototransformation of xenobiotics in the Guadiana River under normal flow conditions, but it could become important in the case of low flow produced by water scarcity.
2018
198
473
481
https://www.sciencedirect.com/science/article/pii/S0045653518301735
Phototransformation; River water; Carbamazepine; Diclofenac; Ibuprofen.
Davide Vione, Angel Encinas, Debora Fabbri, Paola Calza
File in questo prodotto:
File Dimensione Formato  
Chemo2018_WWTP.pdf

Accesso riservato

Descrizione: Articolo principale
Tipo di file: PDF EDITORIALE
Dimensione 2.09 MB
Formato Adobe PDF
2.09 MB Adobe PDF   Visualizza/Apri   Richiedi una copia
WWTP_2018.pdf

Open Access dal 02/01/2021

Descrizione: Articolo principale
Tipo di file: POSTPRINT (VERSIONE FINALE DELL’AUTORE)
Dimensione 4.91 MB
Formato Adobe PDF
4.91 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2318/1687057
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 21
  • ???jsp.display-item.citation.isi??? 20
social impact