The coiled-coil protein domain is a widespread structural motif known to be involved in a wealth of key interactions in cells and organisms. Coiled-coil recognition and prediction of their location in a protein sequence are important steps for modeling protein structure and function. Nowadays, thanks to the increasing number of experimentally determined protein structures, a significant number of coiled-coil protein domains is available. This enables the development of methods suited to predict the coiled-coil structural motifs starting from the protein sequence. Several methods have been developed to predict classical heptads using manually annotated coiled-coil domains. In this paper we focus on the prediction structurally-determined coiled-coil segments. We introduce a new method based on hidden Markov models that complement the existing methods and outperforms them in the task of locating structurally-defined coiled-coil segments.

Prediction of structurally-determined coiled-coil domains with Hidden Markov Models

Fariselli P.;
2007-01-01

Abstract

The coiled-coil protein domain is a widespread structural motif known to be involved in a wealth of key interactions in cells and organisms. Coiled-coil recognition and prediction of their location in a protein sequence are important steps for modeling protein structure and function. Nowadays, thanks to the increasing number of experimentally determined protein structures, a significant number of coiled-coil protein domains is available. This enables the development of methods suited to predict the coiled-coil structural motifs starting from the protein sequence. Several methods have been developed to predict classical heptads using manually annotated coiled-coil domains. In this paper we focus on the prediction structurally-determined coiled-coil segments. We introduce a new method based on hidden Markov models that complement the existing methods and outperforms them in the task of locating structurally-defined coiled-coil segments.
2007
Lecture Notes in Computer Science
Springer
4414
292
302
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2318/1687521
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 14
  • ???jsp.display-item.citation.isi??? ND
social impact