One of the major challenges in human genetics is to identify functional effects of coding and non-coding single nucleotide variants (SNVs). In the past, several methods have been developed to identify disease-related single amino acid changes but only few tools are able to score the impact of non-coding variants. Among the most popular algorithms, CADD and FATHMM predict the effect of SNVs in non-coding regions combining sequence conservation with several functional features derived from the ENCODE project data. Thus, to run CADD or FATHMM locally, the installation process requires to download a large set of pre-calculated information. To facilitate the process of variant annotation we develop PhD-SNPg, a new easy-to-install and lightweight machine learning method that depends only on sequence-based features. Despite this, PhD-SNPg performs similarly or better than more complex methods. This makes PhD-SNPg ideal for quick SNV interpretation, and as benchmark for tool development.

PhD-SNPg: a webserver and lightweight tool for scoring single nucleotide variants

Fariselli, Piero
Last
2017-01-01

Abstract

One of the major challenges in human genetics is to identify functional effects of coding and non-coding single nucleotide variants (SNVs). In the past, several methods have been developed to identify disease-related single amino acid changes but only few tools are able to score the impact of non-coding variants. Among the most popular algorithms, CADD and FATHMM predict the effect of SNVs in non-coding regions combining sequence conservation with several functional features derived from the ENCODE project data. Thus, to run CADD or FATHMM locally, the installation process requires to download a large set of pre-calculated information. To facilitate the process of variant annotation we develop PhD-SNPg, a new easy-to-install and lightweight machine learning method that depends only on sequence-based features. Despite this, PhD-SNPg performs similarly or better than more complex methods. This makes PhD-SNPg ideal for quick SNV interpretation, and as benchmark for tool development.
2017
3
45(W1)
247
252
Capriotti, Emidio; Fariselli, Piero
File in questo prodotto:
File Dimensione Formato  
CapriottiFariselliNar2017_gkx369.pdf

Accesso aperto

Tipo di file: PDF EDITORIALE
Dimensione 533.63 kB
Formato Adobe PDF
533.63 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2318/1687547
Citazioni
  • ???jsp.display-item.citation.pmc??? 25
  • Scopus 125
  • ???jsp.display-item.citation.isi??? 113
social impact