Proteins have coevolved with cellular environments to improve or preserve their functions, maintaining at the same time the degree of hydrophobicity necessary to fold correctly and enough solubility to perform their biological roles. Here, we study the Escherichia coli proteome using a Pareto front analysis in the solubility-hydrophobicity space. The results indicate the existence of a Pareto optimal front, a triangle whose vertices correspond to archetypal proteins specialized in distinct tasks, such as regulatory processes, membrane transport, outer-membrane pore formation, catalysis, and binding. The vertices are further enriched with proteins that occupy different subcellular compartments, namely, cytoplasmic, inner membrane, outer membrane, and outer membrane bounded periplasmic space. The combination of various enriching features offers an interpretation of how bacteria use the physicochemical properties of proteins, both to drive them into their final destination in the cell and to have their tasks accomplished.

Signature of Pareto optimization in the Escherichia coli proteome

Fariselli, Piero;
2018-01-01

Abstract

Proteins have coevolved with cellular environments to improve or preserve their functions, maintaining at the same time the degree of hydrophobicity necessary to fold correctly and enough solubility to perform their biological roles. Here, we study the Escherichia coli proteome using a Pareto front analysis in the solubility-hydrophobicity space. The results indicate the existence of a Pareto optimal front, a triangle whose vertices correspond to archetypal proteins specialized in distinct tasks, such as regulatory processes, membrane transport, outer-membrane pore formation, catalysis, and binding. The vertices are further enriched with proteins that occupy different subcellular compartments, namely, cytoplasmic, inner membrane, outer membrane, and outer membrane bounded periplasmic space. The combination of various enriching features offers an interpretation of how bacteria use the physicochemical properties of proteins, both to drive them into their final destination in the cell and to have their tasks accomplished.
2018
Inglese
Esperti anonimi
8
1
8
8
www.nature.com/srep/index.html
Multidisciplinary
no
1 – prodotto con file in versione Open Access (allegherò il file al passo 6 - Carica)
262
5
Koçillari, Loren; Fariselli, Piero; Trovato, Antonio; Seno, Flavio; Maritan, Amos
info:eu-repo/semantics/article
open
03-CONTRIBUTO IN RIVISTA::03A-Articolo su Rivista
File in questo prodotto:
File Dimensione Formato  
Kocillari_sci_rep_2018.pdf

Accesso aperto

Tipo di file: PDF EDITORIALE
Dimensione 6 MB
Formato Adobe PDF
6 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2318/1687579
Citazioni
  • ???jsp.display-item.citation.pmc??? 3
  • Scopus 6
  • ???jsp.display-item.citation.isi??? 6
social impact