Knowing the number of residue contacts in a protein is crucial for deriving constraints useful in modeling protein folding, protein structure, and/or scoring remote homology searches. Here we use an ensemble of bidirectional recurrent neural network architectures and evolutionary information to improve the state-of-the-art in contact prediction using a large corpus of curated data. The ensemble is used to discriminate between two different states of residue contacts, characterized by a contact number higher or lower than the average value of the residue distribution. The ensemble achieves performances ranging from 70.1% to 73.1% depending on the radius adopted to discriminate contacts (6Å to 12Å). These performances represent gains of 15% to 20% over the base line statistical predictors always assigning an aminoacid to the most numerous state, 3% to 7% better than any previous method. Combination of different radius predictors further improves the performance. © Oxford University Press 2001.

Improved prediction of the number of residue contacts in proteins by recurrent neural networks

Fariselli P;
2001-01-01

Abstract

Knowing the number of residue contacts in a protein is crucial for deriving constraints useful in modeling protein folding, protein structure, and/or scoring remote homology searches. Here we use an ensemble of bidirectional recurrent neural network architectures and evolutionary information to improve the state-of-the-art in contact prediction using a large corpus of curated data. The ensemble is used to discriminate between two different states of residue contacts, characterized by a contact number higher or lower than the average value of the residue distribution. The ensemble achieves performances ranging from 70.1% to 73.1% depending on the radius adopted to discriminate contacts (6Å to 12Å). These performances represent gains of 15% to 20% over the base line statistical predictors always assigning an aminoacid to the most numerous state, 3% to 7% better than any previous method. Combination of different radius predictors further improves the performance. © Oxford University Press 2001.
2001
17
S234
S242
http://www.scopus.com/inward/record.url?eid=2-s2.0-0035237804&partnerID=40&md5=7d7be0bed2aa781188edfc6fa1dc7f20
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2318/1687631
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 43
  • ???jsp.display-item.citation.isi??? ND
social impact