We investigate the existence of left-invariant closed G2-structures on seven-dimensional non-solvable Lie groups, providing the first examples of this type. When the Lie algebra has trivial Levi decomposition, we show that such a structure exists only when the semisimple part is isomorphic to sl(2,R) and the radical is unimodular and centerless. Moreover, we classify unimodular Lie algebras with non-trivial Levi decomposition admitting closed G2-structures.

Closed G_2-structures on non-solvable Lie groups

Anna Fino;Alberto Raffero
2019-01-01

Abstract

We investigate the existence of left-invariant closed G2-structures on seven-dimensional non-solvable Lie groups, providing the first examples of this type. When the Lie algebra has trivial Levi decomposition, we show that such a structure exists only when the semisimple part is isomorphic to sl(2,R) and the radical is unimodular and centerless. Moreover, we classify unimodular Lie algebras with non-trivial Levi decomposition admitting closed G2-structures.
2019
32
3
837
851
https://arxiv.org/abs/1712.09664
closed G2-structure, non-solvable Lie group, Levi decomposition
Anna Fino; Alberto Raffero
File in questo prodotto:
File Dimensione Formato  
1712.09664.pdf

Accesso aperto

Tipo di file: PREPRINT (PRIMA BOZZA)
Dimensione 190.5 kB
Formato Adobe PDF
190.5 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2318/1687784
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 14
  • ???jsp.display-item.citation.isi??? 10
social impact