Diketopyrrolopyrrole (DPP) is one of the most common building blocks for small molecules and conjugated polymers designed for organic electronic applications. By attaining a detailed understanding of the photophysical behaviour for a simple DPP-based molecule in fullerene blends, we establish a foundation for spectroscopic investigations into more complex DPP-based systems. Transient absorption spectroscopy (TAS) and time-resolved electron paramagnetic resonance (TR-EPR) spectroscopy are used to examine bulk heterojunction blend films of a small diketopyrrolopyrrole-based molecule, 2,5-bis(2-hexyldecyl)-3,6-di(thiophen-2-yl)-2,5-dihydropyrrolo[3,4-c]pyrrole-1,4-dione (TDPP) with the common fullerene derivatives [6,6]-phenyl-C61-butyric acid methyl ester (PC60BM) and [6,6]-phenyl-C71-butyric acid methyl ester (PC70BM). Following pulsed laser excitation, the spectral signatures of a fullerene anion and a TDPP triplet state are observed on the picosecond timescale by TAS. The presence of these species implies the formation of a TDPP:PCBM charge transfer state that subsequently undergoes ultra-fast spin-mixing and geminate recombination to produce a TDPP triplet state. The overall photophysical mechanism is confirmed by TR-EPR spectroscopy, which unambiguously shows that the TDPP triplet is formed via spin-mixing in the TDPP:PCBM charge transfer state, rather than direct intersystem crossing from the excited singlet state.

Ultra-fast spin-mixing in a diketopyrrolopyrrole monomer/fullerene blend charge transfer state

Salvadori, Enrico;
2017

Abstract

Diketopyrrolopyrrole (DPP) is one of the most common building blocks for small molecules and conjugated polymers designed for organic electronic applications. By attaining a detailed understanding of the photophysical behaviour for a simple DPP-based molecule in fullerene blends, we establish a foundation for spectroscopic investigations into more complex DPP-based systems. Transient absorption spectroscopy (TAS) and time-resolved electron paramagnetic resonance (TR-EPR) spectroscopy are used to examine bulk heterojunction blend films of a small diketopyrrolopyrrole-based molecule, 2,5-bis(2-hexyldecyl)-3,6-di(thiophen-2-yl)-2,5-dihydropyrrolo[3,4-c]pyrrole-1,4-dione (TDPP) with the common fullerene derivatives [6,6]-phenyl-C61-butyric acid methyl ester (PC60BM) and [6,6]-phenyl-C71-butyric acid methyl ester (PC70BM). Following pulsed laser excitation, the spectral signatures of a fullerene anion and a TDPP triplet state are observed on the picosecond timescale by TAS. The presence of these species implies the formation of a TDPP:PCBM charge transfer state that subsequently undergoes ultra-fast spin-mixing and geminate recombination to produce a TDPP triplet state. The overall photophysical mechanism is confirmed by TR-EPR spectroscopy, which unambiguously shows that the TDPP triplet is formed via spin-mixing in the TDPP:PCBM charge transfer state, rather than direct intersystem crossing from the excited singlet state.
JOURNAL OF MATERIALS CHEMISTRY. A
5
46
24335
24343
http://pubs.rsc.org/en/journals/journalissues/ta
Chemistry (all); Renewable Energy, Sustainability and the Environment; Materials Science (all); transient absorptiom, EPR, charge transfer
Salvadori, Enrico; Luke, Nathaniel; Shaikh, Jordan; Leventis, Anastasia; Bronstein, Hugo; Kay, Christopher W. M.; Clarke, Tracey M.*
File in questo prodotto:
File Dimensione Formato  
c7ta07381j(2).pdf

non disponibili

Tipo di file: PDF EDITORIALE
Dimensione 2 MB
Formato Adobe PDF
2 MB Adobe PDF   Visualizza/Apri   Richiedi una copia
DPP_SpinMixing_PrePrint_Salvadori.pdf

embargo fino al 07/11/2019

Tipo di file: PREPRINT (PRIMA BOZZA)
Dimensione 944.19 kB
Formato Adobe PDF
944.19 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: http://hdl.handle.net/2318/1690197
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 14
  • ???jsp.display-item.citation.isi??? 14
social impact