The ‘radical S-adenosyl-L-methionine (AdoMet)’ enzyme Cfr methylates adenosine 2503 of the 23S rRNA in the peptidyltransferase centre (P-site) of the bacterial ribosome. This modification protects host bacteria, notably methicillin-resistant Staphylococcus aureus (MRSA), from numerous antibiotics, including agents (e.g. linezolid, retapamulin) that were developed to treat such organisms. Cfr contains a single [4Fe-4S] cluster that binds two separate molecules of AdoMet during the reaction cycle. These are used sequentially to first methylate a cysteine residue, Cys338; and subsequently generate an oxidative radical intermediate that facilitates methyl transfer to the unreactive C8 (and/or C2) carbon centres of adenosine 2503. How the Cfr active site, with its single [4Fe-4S] cluster, catalyses these two distinct activities that each utilise AdoMet as a substrate remains to be established. Here, we use absorbance and electron paramagnetic resonance (EPR) spectroscopy to investigate the interactions of AdoMet with the [4Fe-4S] clusters of wild-type Cfr and a Cys338 Ala mutant, which is unable to accept a methyl group. Cfr binds AdoMet with high (∼ 10 µM) affinity notwithstanding the absence of the RNA cosubstrate. In wild-type Cfr, where Cys338 is methylated, AdoMet binding leads to rapid oxidation of the [4Fe-4S] cluster and production of 5'-deoxyadenosine (DOA). In contrast, while Cys338 Ala Cfr binds AdoMet with equivalent affinity, oxidation of the [4Fe-4S] cluster is not observed. Our results indicate that the presence of a methyl group on Cfr Cys338 is a key determinant of the activity of the enzyme towards AdoMet, thus enabling a single active site to support two distinct modes of AdoMet cleavage.

Cysteine Methylation Controls Radical Generation in the Cfr Radical AdoMet rRNA Methyltransferase

Salvadori E;
2013-01-01

Abstract

The ‘radical S-adenosyl-L-methionine (AdoMet)’ enzyme Cfr methylates adenosine 2503 of the 23S rRNA in the peptidyltransferase centre (P-site) of the bacterial ribosome. This modification protects host bacteria, notably methicillin-resistant Staphylococcus aureus (MRSA), from numerous antibiotics, including agents (e.g. linezolid, retapamulin) that were developed to treat such organisms. Cfr contains a single [4Fe-4S] cluster that binds two separate molecules of AdoMet during the reaction cycle. These are used sequentially to first methylate a cysteine residue, Cys338; and subsequently generate an oxidative radical intermediate that facilitates methyl transfer to the unreactive C8 (and/or C2) carbon centres of adenosine 2503. How the Cfr active site, with its single [4Fe-4S] cluster, catalyses these two distinct activities that each utilise AdoMet as a substrate remains to be established. Here, we use absorbance and electron paramagnetic resonance (EPR) spectroscopy to investigate the interactions of AdoMet with the [4Fe-4S] clusters of wild-type Cfr and a Cys338 Ala mutant, which is unable to accept a methyl group. Cfr binds AdoMet with high (∼ 10 µM) affinity notwithstanding the absence of the RNA cosubstrate. In wild-type Cfr, where Cys338 is methylated, AdoMet binding leads to rapid oxidation of the [4Fe-4S] cluster and production of 5'-deoxyadenosine (DOA). In contrast, while Cys338 Ala Cfr binds AdoMet with equivalent affinity, oxidation of the [4Fe-4S] cluster is not observed. Our results indicate that the presence of a methyl group on Cfr Cys338 is a key determinant of the activity of the enzyme towards AdoMet, thus enabling a single active site to support two distinct modes of AdoMet cleavage.
2013
8
7
1
10
Challand MR; Salvadori E; Driesener RC; Kay CWM; Roach PL; Spencer J
File in questo prodotto:
File Dimensione Formato  
journal.pone.0067979(1).PDF

Accesso aperto

Tipo di file: PDF EDITORIALE
Dimensione 930.86 kB
Formato Adobe PDF
930.86 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2318/1690281
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 10
  • ???jsp.display-item.citation.isi??? 10
social impact