In natural ecosystems, relationships between organisms are often characterised by high levels of complexity, where vulnerabilities in multi-trophic systems are difficult to identify, yet variation in specific community modules can be traceable. Within the complex community interactions, we can shed new light on dynamics by which co-evolutionary outcomes can inform science-led conservation. Here we assessed host-ant use in six populations of the butterfy Phengaris (=Maculinea) rebeli, an obligate social parasite of Myrmica ants and a model system in evolutionary and conservation ecology. Starting from the initial distribution of eggs, we estimated the survival of the parasite in the wild in nests of seven Myrmica ant species, and analysed the chemical cues evolved by the parasites to subvert its host defences. We found local variations in host specificity that are consistent with similarities found in the chemical profiles of hosts and parasites on different sites. At some sites, only one ant species is successfully exploited; at others, multiple-host populations are used. Understanding how stable or adaptable these associations are is essential knowledge when devising conservation measures to maintain keystone species of ant and locally adapted populations of Phengaris butterfy species, which are rare, threatened and a high priority for conservation worldwide
Host specificity pattern and chemical deception in a social parasite of ants
Casacci, Luca Pietro;Balletto, Emilio;Bonelli, Simona;Barbero, Francesca
Last
2019-01-01
Abstract
In natural ecosystems, relationships between organisms are often characterised by high levels of complexity, where vulnerabilities in multi-trophic systems are difficult to identify, yet variation in specific community modules can be traceable. Within the complex community interactions, we can shed new light on dynamics by which co-evolutionary outcomes can inform science-led conservation. Here we assessed host-ant use in six populations of the butterfy Phengaris (=Maculinea) rebeli, an obligate social parasite of Myrmica ants and a model system in evolutionary and conservation ecology. Starting from the initial distribution of eggs, we estimated the survival of the parasite in the wild in nests of seven Myrmica ant species, and analysed the chemical cues evolved by the parasites to subvert its host defences. We found local variations in host specificity that are consistent with similarities found in the chemical profiles of hosts and parasites on different sites. At some sites, only one ant species is successfully exploited; at others, multiple-host populations are used. Understanding how stable or adaptable these associations are is essential knowledge when devising conservation measures to maintain keystone species of ant and locally adapted populations of Phengaris butterfy species, which are rare, threatened and a high priority for conservation worldwideFile | Dimensione | Formato | |
---|---|---|---|
Casacci et al 2019.pdf
Accesso aperto
Descrizione: Articolo principale
Tipo di file:
PDF EDITORIALE
Dimensione
2.25 MB
Formato
Adobe PDF
|
2.25 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.