In recent years, the study of the interplay between (fully) non-linear potential theory and geometry received important new impulse. The purpose of our work is to move a step further in this direction by investigating appropriate versions of parabolicity and maximum principles at infinity for large classes of non-linear (sub)equations F on manifolds. The main goal is to show a unifying duality between such properties and the existence of suitable F-subharmonic exhaustions, called Khas'minskii potentials, which is new even for most of the ``standard" operators arising from geometry, and improves on partial results in the literature. Applications include new characterizations of the classical maximum principles at infinity (Ekeland, Omori-Yau and their weak versions by Pigola-Rigoli-Setti) and of conservation properties for stochastic processes (martingale completeness). Applications to the theory of submanifolds and Riemannian submersions are also discussed.
Duality between Ahlfors-Liouville and Khas'minskii properties for nonlinear equations
Mari, Luciano;
2020-01-01
Abstract
In recent years, the study of the interplay between (fully) non-linear potential theory and geometry received important new impulse. The purpose of our work is to move a step further in this direction by investigating appropriate versions of parabolicity and maximum principles at infinity for large classes of non-linear (sub)equations F on manifolds. The main goal is to show a unifying duality between such properties and the existence of suitable F-subharmonic exhaustions, called Khas'minskii potentials, which is new even for most of the ``standard" operators arising from geometry, and improves on partial results in the literature. Applications include new characterizations of the classical maximum principles at infinity (Ekeland, Omori-Yau and their weak versions by Pigola-Rigoli-Setti) and of conservation properties for stochastic processes (martingale completeness). Applications to the theory of submanifolds and Riemannian submersions are also discussed.File | Dimensione | Formato | |
---|---|---|---|
version to send_final.pdf
Accesso aperto
Tipo di file:
POSTPRINT (VERSIONE FINALE DELL’AUTORE)
Dimensione
640.53 kB
Formato
Adobe PDF
|
640.53 kB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.