We study the conformal geometry of surfaces immersed in the fourdimensional conformal sphere Q4, viewed as a homogeneous space under the action of the Mobius group. We introduce the classes of isotropic surfaces and characterize them as those whose conformal Gauss map is antiholomorphic or holomorphic. We then relate these surfaces to Willmore surfaces and prove some vanishing results and some bounds on the Euler characteristic of the surfaces. Finally, we characterize isotropic surfaces through an Enneper-Weierstrass-type parametrization.

Remarks on the geometry of surfaces in the four-dimensional Mobius sphere

MARI, Luciano;
2016-01-01

Abstract

We study the conformal geometry of surfaces immersed in the fourdimensional conformal sphere Q4, viewed as a homogeneous space under the action of the Mobius group. We introduce the classes of isotropic surfaces and characterize them as those whose conformal Gauss map is antiholomorphic or holomorphic. We then relate these surfaces to Willmore surfaces and prove some vanishing results and some bounds on the Euler characteristic of the surfaces. Finally, we characterize isotropic surfaces through an Enneper-Weierstrass-type parametrization.
2016
74
1
121
161
http://www.seminariomatematico.unito.it/rendiconti/74-12.html
Magliaro, M.; MARI, Luciano; Rigoli, M.
File in questo prodotto:
File Dimensione Formato  
superfici_final.pdf

Accesso aperto

Tipo di file: PREPRINT (PRIMA BOZZA)
Dimensione 376.22 kB
Formato Adobe PDF
376.22 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2318/1693247
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? ND
social impact