Quantum holonomies of closed paths on the torus $IT^2$ are interpreted as elements of the Heisenberg group $H_1$. Group composition in $H_1$ corresponds to path concatenation and the group commutator is a deformation of the relator of the fundamental group $pi_1$ of $IT^2$, making explicit the signed area phases between quantum holonomies of homotopic paths. Inner automorphisms of $H_1$ adjust these signed areas, and the discrete symplectic transformations of $H_1$ generate the modular group of $IT^2$.
QUANTUM HOLONOMIES AND THE HEISENBERG GROUP
J. E. Nelson;
2019-01-01
Abstract
Quantum holonomies of closed paths on the torus $IT^2$ are interpreted as elements of the Heisenberg group $H_1$. Group composition in $H_1$ corresponds to path concatenation and the group commutator is a deformation of the relator of the fundamental group $pi_1$ of $IT^2$, making explicit the signed area phases between quantum holonomies of homotopic paths. Inner automorphisms of $H_1$ adjust these signed areas, and the discrete symplectic transformations of $H_1$ generate the modular group of $IT^2$.File in questo prodotto:
File | Dimensione | Formato | |
---|---|---|---|
1808.08812.pdf
Accesso aperto
Tipo di file:
PREPRINT (PRIMA BOZZA)
Dimensione
312.82 kB
Formato
Adobe PDF
|
312.82 kB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.