We prove precompactness in an orbifold Cheeger-Gromov sense of complete gradient Ricci shrinkers with a lower bound on their entropy and a local integral Riemann bound. We do not need any pointwise curvature assumptions, volume or diameter bounds. In dimension four, under a technical assumption, we can replace the local integral Riemann bound by an upper bound for the Euler characteristic. The proof relies on a Gauss-Bonnet with cutoff argument.
A Compactness Theorem for Complete Ricci Shrinkers
Müller, Reto
2011-01-01
Abstract
We prove precompactness in an orbifold Cheeger-Gromov sense of complete gradient Ricci shrinkers with a lower bound on their entropy and a local integral Riemann bound. We do not need any pointwise curvature assumptions, volume or diameter bounds. In dimension four, under a technical assumption, we can replace the local integral Riemann bound by an upper bound for the Euler characteristic. The proof relies on a Gauss-Bonnet with cutoff argument.File in questo prodotto:
File | Dimensione | Formato | |
---|---|---|---|
1005.3255.pdf
Open Access dal 02/10/2012
Tipo di file:
POSTPRINT (VERSIONE FINALE DELL’AUTORE)
Dimensione
308.18 kB
Formato
Adobe PDF
|
308.18 kB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.