In arXiv:1005.3255 we proved an orbifold Cheeger-Gromov compactness theorem for complete 4d Ricci shrinkers with a lower bound for the entropy, an upper bound for the Euler characterisic, and a lower bound for the gradient of the potential at large distances. In this note, we show that the last two assumptions in fact can be removed. The key ingredient is a recent estimate of Cheeger-Naber arXiv:1406.6534.

A note on the compactness theorem for 4d Ricci Shrinkers

Müller, Reto
2015

Abstract

In arXiv:1005.3255 we proved an orbifold Cheeger-Gromov compactness theorem for complete 4d Ricci shrinkers with a lower bound for the entropy, an upper bound for the Euler characterisic, and a lower bound for the gradient of the potential at large distances. In this note, we show that the last two assumptions in fact can be removed. The key ingredient is a recent estimate of Cheeger-Naber arXiv:1406.6534.
143
10
4433
4437
https://arxiv.org/abs/1407.1683
Haslhofer, Robert; Müller, Reto
File in questo prodotto:
File Dimensione Formato  
1407.1683.pdf

Accesso aperto

Tipo di file: POSTPRINT (VERSIONE FINALE DELL’AUTORE)
Dimensione 110.72 kB
Formato Adobe PDF
110.72 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: http://hdl.handle.net/2318/1701047
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 9
  • ???jsp.display-item.citation.isi??? 9
social impact