In arXiv:1005.3255 we proved an orbifold Cheeger-Gromov compactness theorem for complete 4d Ricci shrinkers with a lower bound for the entropy, an upper bound for the Euler characterisic, and a lower bound for the gradient of the potential at large distances. In this note, we show that the last two assumptions in fact can be removed. The key ingredient is a recent estimate of Cheeger-Naber arXiv:1406.6534.
A note on the compactness theorem for 4d Ricci Shrinkers
Müller, Reto
2015-01-01
Abstract
In arXiv:1005.3255 we proved an orbifold Cheeger-Gromov compactness theorem for complete 4d Ricci shrinkers with a lower bound for the entropy, an upper bound for the Euler characterisic, and a lower bound for the gradient of the potential at large distances. In this note, we show that the last two assumptions in fact can be removed. The key ingredient is a recent estimate of Cheeger-Naber arXiv:1406.6534.File in questo prodotto:
File | Dimensione | Formato | |
---|---|---|---|
1407.1683.pdf
Accesso aperto
Tipo di file:
POSTPRINT (VERSIONE FINALE DELL’AUTORE)
Dimensione
110.72 kB
Formato
Adobe PDF
|
110.72 kB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.