In this article, we briefly review the identification of GHRH, provide an abridged overview of GHRH antagonists, and focus on studies with GHRH agonists. Potent GHRH agonists of JI and MR class were synthesized and evaluated biologically. Besides the induction of the release of pituitary GH, GHRH analogs promote cell proliferation and exert stimulatory effects on various tissues, which express GHRH receptors (GHRH-Rs). A large body of work shows that GHRH agonists, such as MR-409, improve pancreatic β-cell proliferation and metabolic functions and facilitate engraftment of islets after transplantation in rodents. Accordingly, GHRH agonists offer a new therapeutic approach to treating diabetes. Various studies demonstrate that GHRH agonists promote repair of cardiac tissue, producing improvement of ejection fraction and reduction of infarct size in rats, reduction of infarct scar in swine, and attenuation of cardiac hypertrophy in mice, suggesting clinical applications. The presence of GHRH-Rs in ocular tissues and neuroprotective effects of GHRH analogs in experimental diabetic retinopathy indicates their possible therapeutic applications for eye diseases. Other effects of GHRH agonists, include acceleration of wound healing, activation of immune cells, and action on the central nervous system. As GHRH might function as a growth factor, we examined effects of GHRH agonists on tumors. In vitro, GHRH agonists stimulate growth of human cancer cells and upregulate GHRH-Rs. However, in vivo, GHRH agonists inhibit growth of human cancers xenografted into nude mice and downregulate pituitary and tumoral GHRH-Rs. Therapeutic applications of GHRH analogs are discussed. The development of GHRH analogs should lead to their clinical use.
Actions and Potential Therapeutic Applications of Growth Hormone-Releasing Hormone Agonists
Granata R.;
2019-01-01
Abstract
In this article, we briefly review the identification of GHRH, provide an abridged overview of GHRH antagonists, and focus on studies with GHRH agonists. Potent GHRH agonists of JI and MR class were synthesized and evaluated biologically. Besides the induction of the release of pituitary GH, GHRH analogs promote cell proliferation and exert stimulatory effects on various tissues, which express GHRH receptors (GHRH-Rs). A large body of work shows that GHRH agonists, such as MR-409, improve pancreatic β-cell proliferation and metabolic functions and facilitate engraftment of islets after transplantation in rodents. Accordingly, GHRH agonists offer a new therapeutic approach to treating diabetes. Various studies demonstrate that GHRH agonists promote repair of cardiac tissue, producing improvement of ejection fraction and reduction of infarct size in rats, reduction of infarct scar in swine, and attenuation of cardiac hypertrophy in mice, suggesting clinical applications. The presence of GHRH-Rs in ocular tissues and neuroprotective effects of GHRH analogs in experimental diabetic retinopathy indicates their possible therapeutic applications for eye diseases. Other effects of GHRH agonists, include acceleration of wound healing, activation of immune cells, and action on the central nervous system. As GHRH might function as a growth factor, we examined effects of GHRH agonists on tumors. In vitro, GHRH agonists stimulate growth of human cancer cells and upregulate GHRH-Rs. However, in vivo, GHRH agonists inhibit growth of human cancers xenografted into nude mice and downregulate pituitary and tumoral GHRH-Rs. Therapeutic applications of GHRH analogs are discussed. The development of GHRH analogs should lead to their clinical use.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.