The overwhelming majority of cases of primary aldosteronism (PA) occur sporadically due to a unilateral aldosterone-producing adenoma (APA) or bilateral idiopathic adrenal hyperplasia. Familial forms of PA are rare with four subtypes defined to date (familial hyperaldosteronism types I-IV). The molecular basis of familial hyperaldosteronism type I (FH type I or glucocorticoid-remediable aldosteronism) was established in 1992; two decades later the genetic variant causing FH type III was identified and germline mutations causing FH type IV and FH type II were determined soon after. Effective diagnostic protocols and methods to detect the overactive gland in unilateral PA by adrenal venous sampling followed by laparoscopic adrenalectomy have made available APAs for scientific studies. In rapid succession, following the widespread use of next-generation sequencing, recurrent somatic driver mutations in APAs were identified in genes encoding ion channels and transporters. The development of highly specific monoclonal antibodies against key enzymes in adrenal steroidogenesis has unveiled the heterogeneous features of the diseased adrenal in PA and helped reveal the high proportion of APAs with driver mutations. We discuss what is known about the genetics of PA that has led to a clearer understanding of the disease pathophysiology.

Timeline of Advances in Genetics of Primary Aldosteronism

Williams T. A.
2019-01-01

Abstract

The overwhelming majority of cases of primary aldosteronism (PA) occur sporadically due to a unilateral aldosterone-producing adenoma (APA) or bilateral idiopathic adrenal hyperplasia. Familial forms of PA are rare with four subtypes defined to date (familial hyperaldosteronism types I-IV). The molecular basis of familial hyperaldosteronism type I (FH type I or glucocorticoid-remediable aldosteronism) was established in 1992; two decades later the genetic variant causing FH type III was identified and germline mutations causing FH type IV and FH type II were determined soon after. Effective diagnostic protocols and methods to detect the overactive gland in unilateral PA by adrenal venous sampling followed by laparoscopic adrenalectomy have made available APAs for scientific studies. In rapid succession, following the widespread use of next-generation sequencing, recurrent somatic driver mutations in APAs were identified in genes encoding ion channels and transporters. The development of highly specific monoclonal antibodies against key enzymes in adrenal steroidogenesis has unveiled the heterogeneous features of the diseased adrenal in PA and helped reveal the high proportion of APAs with driver mutations. We discuss what is known about the genetics of PA that has led to a clearer understanding of the disease pathophysiology.
2019
Genetics of Endocrine Diseases and Syndromes
NLM (Medline)
111
213
243
978-3-030-25904-4
978-3-030-25905-1
Aldosterone-producing adenoma; Bilateral adrenal hyperplasia; Familial hyperaldosteronism; PASNA; Primary aldosteronism; Adrenalectomy; Adrenocortical Adenoma; Germ-Line Mutation; Humans; Hyperaldosteronism
Meyer L.S.; Reincke M.; Williams T.A.
File in questo prodotto:
File Dimensione Formato  
Meyer Book Chapter(1).pdf

Accesso riservato

Descrizione: articolo principale
Tipo di file: POSTPRINT (VERSIONE FINALE DELL’AUTORE)
Dimensione 2.83 MB
Formato Adobe PDF
2.83 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2318/1717658
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 2
  • ???jsp.display-item.citation.isi??? ND
social impact