Cassirer's philosophical agenda revolved around what appears to be a paradoxical goal, that is, to reconcile the Kantian explanation of the possibility of knowledge with the conceptual changes of nineteenth and early twentieth-century science. This paper offers a new discussion of one way in which this paradox manifests itself in Cassirer's philosophy of mathematics. Cassirer articulated a unitary perspective on mathematics as an investigation of structures independently of the nature of individual objects making up those structures. However, this posed the problem of how to account for the applicability of abstract mathematical concepts to empirical reality. My suggestion is that Cassirer was able to address this problem by giving a transcendental account of mathematical reasoning, according to which the very formation of mathematical concepts provides an explanation of the extensibility of mathematical knowledge. In order to spell out what this argument entails, the first part of the...

Ernst Cassirer's transcendental account of mathematical reasoning

Biagioli, Francesca
2020-01-01

Abstract

Cassirer's philosophical agenda revolved around what appears to be a paradoxical goal, that is, to reconcile the Kantian explanation of the possibility of knowledge with the conceptual changes of nineteenth and early twentieth-century science. This paper offers a new discussion of one way in which this paradox manifests itself in Cassirer's philosophy of mathematics. Cassirer articulated a unitary perspective on mathematics as an investigation of structures independently of the nature of individual objects making up those structures. However, this posed the problem of how to account for the applicability of abstract mathematical concepts to empirical reality. My suggestion is that Cassirer was able to address this problem by giving a transcendental account of mathematical reasoning, according to which the very formation of mathematical concepts provides an explanation of the extensibility of mathematical knowledge. In order to spell out what this argument entails, the first part of the...
2020
79
30
40
https://doi.org/10.1016/j.shpsa.2019.10.001
Ernst Cassirer; Mathematical reasoning; Mathematical structuralism; Neo-kantianism; Transcendental philosophy; Unity of knowledge;
Biagioli, Francesca
File in questo prodotto:
File Dimensione Formato  
1-s2.0-S0039368118300797-main-2.pdf

Accesso aperto

Tipo di file: PDF EDITORIALE
Dimensione 468.62 kB
Formato Adobe PDF
468.62 kB Adobe PDF Visualizza/Apri
1-s2.0-S0039368118300797-main.pdf

Accesso riservato

Tipo di file: PDF EDITORIALE
Dimensione 468.62 kB
Formato Adobe PDF
468.62 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2318/1717833
Citazioni
  • ???jsp.display-item.citation.pmc??? 1
  • Scopus 14
  • ???jsp.display-item.citation.isi??? 12
social impact