Adhesive attachment systems consisting of multiple tapes or strands are commonly found in nature, for example in spider web anchorages or in mussel byssal threads, and their structure has been found to be ingeniously architected in order to optimize mechanical properties: in particular, to maximize dissipated energy before full detachment. These properties emerge from the complex interplay between mechanical and geometric parameters, including tape stiffness, adhesive energy, attached and detached lengths and peeling angles, which determine the occurrence of three main mechanisms: elastic deformation, interface delamination and tape fracture. In this paper, we introduce a formalism to evaluate the mechanical performance of multiple tape attachments in different parameter ranges, where an optimal (not maximal) adhesion energy emerges. We also introduce a numerical model to simulate the multiple peeling behaviour of complex structures, illustrating its predictions in the case of the staple-pin architecture. Finally, we present a proof-of-principle experiment to illustrate the predicted behaviour. We expect the presented formalism and the numerical model to provide important tools for the design of bioinspired adhesive systems with tuneable or optimized detachment properties.

Competition between delamination and tearing in multiple peeling problems

Brely, Lucas;Bosia, Federico;
2019-01-01

Abstract

Adhesive attachment systems consisting of multiple tapes or strands are commonly found in nature, for example in spider web anchorages or in mussel byssal threads, and their structure has been found to be ingeniously architected in order to optimize mechanical properties: in particular, to maximize dissipated energy before full detachment. These properties emerge from the complex interplay between mechanical and geometric parameters, including tape stiffness, adhesive energy, attached and detached lengths and peeling angles, which determine the occurrence of three main mechanisms: elastic deformation, interface delamination and tape fracture. In this paper, we introduce a formalism to evaluate the mechanical performance of multiple tape attachments in different parameter ranges, where an optimal (not maximal) adhesion energy emerges. We also introduce a numerical model to simulate the multiple peeling behaviour of complex structures, illustrating its predictions in the case of the staple-pin architecture. Finally, we present a proof-of-principle experiment to illustrate the predicted behaviour. We expect the presented formalism and the numerical model to provide important tools for the design of bioinspired adhesive systems with tuneable or optimized detachment properties.
2019
16
160
20190388-1
20190388-10
adhesion; fracture; multiple peeling; simulations; spider web
Brely, Lucas; Bosia, Federico; Palumbo, Stefania; Fraldi, Massimiliano; Dhinojwala, Ali; Pugno, Nicola M
File in questo prodotto:
File Dimensione Formato  
2019_Brely_JRSI.pdf

Accesso riservato

Tipo di file: PDF EDITORIALE
Dimensione 1.09 MB
Formato Adobe PDF
1.09 MB Adobe PDF   Visualizza/Apri   Richiedi una copia
Brely_JRSI_2019_revised.pdf

Accesso aperto

Tipo di file: PREPRINT (PRIMA BOZZA)
Dimensione 1.01 MB
Formato Adobe PDF
1.01 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2318/1717974
Citazioni
  • ???jsp.display-item.citation.pmc??? 1
  • Scopus 5
  • ???jsp.display-item.citation.isi??? 5
social impact