The protection from ischaemia‐reperfusion‐associated myocardial infarction worsening remains a big challenge. We produced a bioartificial 3D cardiac patch with cardioinductive properties on stem cells. Its multilayer structure was functionalised with clinically relevant doses of adenosine. We report here the first study on the potential of these cardiac patches in the controlled delivery of adenosine into the in vivo ischaemic‐reperfused pig heart. A Fourier transform infrared chemical imaging approach allowed us to perform a characterisation, complementary to the histological and biochemical analyses on myocardial samples after in vivo patch implantation, increasing the number of investigations and results on the restricted number of pigs (n = 4) employed in this feasibility step. In vitro tests suggested that adenosine was completely released by a functionalised patch, a data that was confirmed in vivo after 24 hr from patch implantation. Moreover, the adenosine‐loaded patch enabled a targeted delivery of the drug to the ischaemic‐reperfused area of the heart, as highlighted by the activation of the pro‐survival signalling reperfusion injury salvage kinases pathway. At 3 months, though limited to one animal, the used methods provided a picture of a tissue in dynamic conditions, associated to the biosynthesis of new collagen and to a non‐fibrotic outcome of the healing process underway. The synergistic effect between the functionalised 3D cardiac patch and adenosine cardioprotection might represent a promising innovation in the treatment of reperfusion injury. As this is a feasibility study, the clinical implications of our findings will require further in vivo investigation on larger numbers of ischaemic‐reperfused pig hearts.

Cardioprotection of PLGA/gelatine cardiac patches functionalised with adenosine in a large animal model of ischaemia and reperfusion injury: A feasibility study

Cibrario Rocchietti E.;Falzone M.;Cabiale K.;Perona G.;Rastaldo R.;Pagliaro P.;Giachino C.
Last
2019

Abstract

The protection from ischaemia‐reperfusion‐associated myocardial infarction worsening remains a big challenge. We produced a bioartificial 3D cardiac patch with cardioinductive properties on stem cells. Its multilayer structure was functionalised with clinically relevant doses of adenosine. We report here the first study on the potential of these cardiac patches in the controlled delivery of adenosine into the in vivo ischaemic‐reperfused pig heart. A Fourier transform infrared chemical imaging approach allowed us to perform a characterisation, complementary to the histological and biochemical analyses on myocardial samples after in vivo patch implantation, increasing the number of investigations and results on the restricted number of pigs (n = 4) employed in this feasibility step. In vitro tests suggested that adenosine was completely released by a functionalised patch, a data that was confirmed in vivo after 24 hr from patch implantation. Moreover, the adenosine‐loaded patch enabled a targeted delivery of the drug to the ischaemic‐reperfused area of the heart, as highlighted by the activation of the pro‐survival signalling reperfusion injury salvage kinases pathway. At 3 months, though limited to one animal, the used methods provided a picture of a tissue in dynamic conditions, associated to the biosynthesis of new collagen and to a non‐fibrotic outcome of the healing process underway. The synergistic effect between the functionalised 3D cardiac patch and adenosine cardioprotection might represent a promising innovation in the treatment of reperfusion injury. As this is a feasibility study, the clinical implications of our findings will require further in vivo investigation on larger numbers of ischaemic‐reperfused pig hearts.
13
7
1253
1264
http://onlinelibrary.wiley.com/journal/10.1002/(ISSN)1932-7005
adenosine; cardiac patch; cardioprotection; FT-IR spectroscopy; large-animal model; RISK pathway
Cristallini C.; Vaccari G.; Barbani N.; Cibrario Rocchietti E.; Barberis R.; Falzone M.; Cabiale K.; Perona G.; Bellotti E.; Rastaldo R.; Pascale S.; Pagliaro P.; Giachino C.
File in questo prodotto:
File Dimensione Formato  
2019_Cristallini_giachino_TERM-13-1253.pdf

Accesso aperto

Tipo di file: PDF EDITORIALE
Dimensione 2.13 MB
Formato Adobe PDF
2.13 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: http://hdl.handle.net/2318/1718036
Citazioni
  • ???jsp.display-item.citation.pmc??? 7
  • Scopus 13
  • ???jsp.display-item.citation.isi??? 13
social impact