The characteristics of fermented milk are affected by the type of milk used and the microorganisms involved in the fermentation process. Goat milk has been widely suggested as a possible alternative to cow milk in allergic subjects, because of the high genetic variability in alpha-s1 casein (CSN1S1) content, which is associated with different technological and nutritional properties of milk. The aim of the study was to evaluate the suitability of goat milk with low and high CSN1S1 to produce fermented milk. In addition, the performance as starter of selected Lactobacillus paracasei FS109 strain compared to no-selected L. paracasei strains was investigated. Initially, the selected L. paracasei FS109 strain was tested for adhesion ability to HT-29 and Caco-2 cells and immunomodulation effect. Then, the strain was used to produce fermented milk from goat milk with a low and high casein CSN1S1 genotype. The results indicated that greater acidifying activity was obtained for L. paracasei FS109 after 24 h of fermentation than the other two strains tested independently by the CSN1S1 genotype. L. paracasei FS109 grew well during fermentation, reaching a higher value (>8.5 log CFU/mL). Interestingly, the same strain maintained a high viable population (about 9 log CFU/mL) during the 30-day cold storage of the product. The present study shows for the first time the suitability of the goat milk with low CSN1S1 genotypes to produce fermented milk and highlight the importance of strain selection in determination of technological and beneficial traits. Combining goat milk with low CSN1S1 and selected strains could be a strategy of improving traditional and functional fermented milk market.
Goat milk with different alpha-s1 casein genotype (CSN1S1) fermented by selected Lactobacillus paracasei as potential functional food
Chessa S.;
2019-01-01
Abstract
The characteristics of fermented milk are affected by the type of milk used and the microorganisms involved in the fermentation process. Goat milk has been widely suggested as a possible alternative to cow milk in allergic subjects, because of the high genetic variability in alpha-s1 casein (CSN1S1) content, which is associated with different technological and nutritional properties of milk. The aim of the study was to evaluate the suitability of goat milk with low and high CSN1S1 to produce fermented milk. In addition, the performance as starter of selected Lactobacillus paracasei FS109 strain compared to no-selected L. paracasei strains was investigated. Initially, the selected L. paracasei FS109 strain was tested for adhesion ability to HT-29 and Caco-2 cells and immunomodulation effect. Then, the strain was used to produce fermented milk from goat milk with a low and high casein CSN1S1 genotype. The results indicated that greater acidifying activity was obtained for L. paracasei FS109 after 24 h of fermentation than the other two strains tested independently by the CSN1S1 genotype. L. paracasei FS109 grew well during fermentation, reaching a higher value (>8.5 log CFU/mL). Interestingly, the same strain maintained a high viable population (about 9 log CFU/mL) during the 30-day cold storage of the product. The present study shows for the first time the suitability of the goat milk with low CSN1S1 genotypes to produce fermented milk and highlight the importance of strain selection in determination of technological and beneficial traits. Combining goat milk with low CSN1S1 and selected strains could be a strategy of improving traditional and functional fermented milk market.File | Dimensione | Formato | |
---|---|---|---|
2019 Mangia Goat Milk with Di↵erent Alpha-s1 Casein Genotype (CSN1S1) Fermented by Selected Lactobacillus paracasei as Potential Functional Food.pdf
Accesso aperto
Descrizione: Articolo principale
Tipo di file:
POSTPRINT (VERSIONE FINALE DELL’AUTORE)
Dimensione
314.44 kB
Formato
Adobe PDF
|
314.44 kB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.