Hydrodynamic cavitation (HC) is a green technology that has been successfully used to intensify a number of process. The cavitation phenomenon is responsible for many effects, including improvements in mass transfer rates and effective cell-wall rupture, leading to matrix disintegration. HC is a promising strategy for extraction processes and provides the fast and efficient recovery of valuable compounds from plants and biomass with high quality. It is a simple method with high energy efficiency that shows great potential for large-scale operations. This review presents a general discussion of the mechanisms of HC, its advantages, different reactor configurations, its applications in the extraction of bioactive compounds from plants, lipids from algal biomass and delignification of lignocellulosic biomass, and a case study in which the HC extraction of basil leftovers is compared with that of other extraction methods.

Plant and biomass extraction and valorisation under hydrodynamic cavitation

Zhilin Wu;Livio Stevanato;Annalisa Costale;Giancarlo Cravotto
2019

Abstract

Hydrodynamic cavitation (HC) is a green technology that has been successfully used to intensify a number of process. The cavitation phenomenon is responsible for many effects, including improvements in mass transfer rates and effective cell-wall rupture, leading to matrix disintegration. HC is a promising strategy for extraction processes and provides the fast and efficient recovery of valuable compounds from plants and biomass with high quality. It is a simple method with high energy efficiency that shows great potential for large-scale operations. This review presents a general discussion of the mechanisms of HC, its advantages, different reactor configurations, its applications in the extraction of bioactive compounds from plants, lipids from algal biomass and delignification of lignocellulosic biomass, and a case study in which the HC extraction of basil leftovers is compared with that of other extraction methods.
1
19
https://www.mdpi.com/2227-9717/7/12/965
hydrodynamic cavitation; process intensification; rotor/stator hydrodynamic rector; plant extraction; biomass treatment
Zhilin Wu, Daniele F. Ferreira, Daniele Crudo, Valentina Bosco, Livio Stevanato, Annalisa Costale, Giancarlo Cravotto
File in questo prodotto:
File Dimensione Formato  
processes-07-00965.pdf

Accesso aperto

Descrizione: PDF editoriale
Tipo di file: PDF EDITORIALE
Dimensione 4.05 MB
Formato Adobe PDF
4.05 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: http://hdl.handle.net/2318/1719746
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 19
  • ???jsp.display-item.citation.isi??? 16
social impact