Cholesterol biosynthesis is a multistep process in mammals that includes the aerobic removal of three methyl groups from the intermediate lanosterol; one from position 14 and two from position 4. During the demethylations at position 4, a 3-ketosteroid reductase catalyses the conversion of both 4-methylzymosterone and zymosterone to 4-methylzymosterol and zymosterol, respectively, restoring the alcoholic function of lanosterol, which is also maintained in cholesterol. Unlike other eukaryotes, mammals also use the same enzyme as an estrone reductase that can transform estrone (E1) into estradiol. This enzyme, named 17β-hydroxysteroid dehydrogenase type 7 (HSD17B7), is therefore a multifunctional protein in mammals, and one that belongs to both the HSD17B family, which is involved in steroid-hormone metabolism, and to the family of post-squalene cholesterol biosynthesis enzymes. In the present study, a series of known inhibitors of human HSD17B7's E1-reductase activity have been assayed for potential inhibition against 3-ketosteroid reductase activity. Surprisingly, the assayed compounds lost their inhibition activity when assayed in HepG2 cells that were incubated with radiolabelled acetate and against the recombinant overexpressed human enzyme incubated with 4-methylzymosterone (both radiolabelled and not). Preliminary kinetic analyses suggest a mixed or non-competitive inhibition on the E1-reductase activity, which is in agreement with Molecular Dynamics simulations. These results raise questions about the mechanism(s) of action of these possible inhibitors, the enzyme dynamic regulation and the interplay between the two activities
Multiple catalytic activities of human 17β-hydroxysteroid dehydrogenase type 7 respond differently to inhibitors.
Ferrante T;Adinolfi S;D'Arrigo G;Daga M;Lolli ML;Balliano G;Spyrakis F;Oliaro-Bosso S.
Last
2020-01-01
Abstract
Cholesterol biosynthesis is a multistep process in mammals that includes the aerobic removal of three methyl groups from the intermediate lanosterol; one from position 14 and two from position 4. During the demethylations at position 4, a 3-ketosteroid reductase catalyses the conversion of both 4-methylzymosterone and zymosterone to 4-methylzymosterol and zymosterol, respectively, restoring the alcoholic function of lanosterol, which is also maintained in cholesterol. Unlike other eukaryotes, mammals also use the same enzyme as an estrone reductase that can transform estrone (E1) into estradiol. This enzyme, named 17β-hydroxysteroid dehydrogenase type 7 (HSD17B7), is therefore a multifunctional protein in mammals, and one that belongs to both the HSD17B family, which is involved in steroid-hormone metabolism, and to the family of post-squalene cholesterol biosynthesis enzymes. In the present study, a series of known inhibitors of human HSD17B7's E1-reductase activity have been assayed for potential inhibition against 3-ketosteroid reductase activity. Surprisingly, the assayed compounds lost their inhibition activity when assayed in HepG2 cells that were incubated with radiolabelled acetate and against the recombinant overexpressed human enzyme incubated with 4-methylzymosterone (both radiolabelled and not). Preliminary kinetic analyses suggest a mixed or non-competitive inhibition on the E1-reductase activity, which is in agreement with Molecular Dynamics simulations. These results raise questions about the mechanism(s) of action of these possible inhibitors, the enzyme dynamic regulation and the interplay between the two activitiesFile | Dimensione | Formato | |
---|---|---|---|
B7manuscript_revised.docx
Accesso riservato
Tipo di file:
POSTPRINT (VERSIONE FINALE DELL’AUTORE)
Dimensione
6.96 MB
Formato
Adobe PDF
|
6.96 MB | Adobe PDF | Visualizza/Apri Richiedi una copia |
B7_2019.pdf
Accesso riservato
Tipo di file:
PDF EDITORIALE
Dimensione
2.2 MB
Formato
Adobe PDF
|
2.2 MB | Adobe PDF | Visualizza/Apri Richiedi una copia |
B7manuscript_revised.pdf
Open Access dal 28/12/2020
Tipo di file:
POSTPRINT (VERSIONE FINALE DELL’AUTORE)
Dimensione
1.16 MB
Formato
Adobe PDF
|
1.16 MB | Adobe PDF | Visualizza/Apri |
2020_Biochimie.pdf
Accesso riservato
Tipo di file:
PDF EDITORIALE
Dimensione
2.2 MB
Formato
Adobe PDF
|
2.2 MB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.