: Poly-aromatic peptide sequences are able to self-assemble into a variety of supramolecular aggregates such as fibers, hydrogels, and tree-like multi-branched nanostructures. Due to their biocompatible nature, these peptide nanostructures have been proposed for several applications in biology and nanomedicine (tissue engineering, drug delivery, bioimaging, and fabrication of biosensors). Here we report the synthesis, the structural characterization and the relaxometric behavior of two novel supramolecular diagnostic agents for magnetic resonance imaging (MRI) technique. These diagnostic agents are obtained for self-assembly of DTPA(Gd)-PEG8-(FY)3 or DOTA(Gd)-PEG8-(FY)3 peptide conjugates, in which the Gd-complexes are linked at the N-terminus of the PEG8-(FY)3 polymer peptide. This latter was previously found able to form self-supporting and stable soft hydrogels at a concentration of 1.0% wt. Analogously, also DTPA(Gd)-PEG8-(FY)3 and DOTA(Gd)-PEG8-(FY)3 exhibit the trend to gelificate at the same range of concentration. Moreover, the structural characterization points out that peptide (FY)3 moiety keeps its capability to arrange into β-sheet structures with an antiparallel orientation of the β-strands. The high relaxivity value of these nanostructures (~12 mM-1·s-1 at 20 MHz) and the very low in vitro cytotoxicity suggest their potential application as supramolecular diagnostic agents for MRI.

Peptide-Based Soft Hydrogels Modified with Gadolinium Complexes as MRI Contrast Agents

Gregorio, Enza Di;Gianolio, Eliana;
2020-01-01

Abstract

: Poly-aromatic peptide sequences are able to self-assemble into a variety of supramolecular aggregates such as fibers, hydrogels, and tree-like multi-branched nanostructures. Due to their biocompatible nature, these peptide nanostructures have been proposed for several applications in biology and nanomedicine (tissue engineering, drug delivery, bioimaging, and fabrication of biosensors). Here we report the synthesis, the structural characterization and the relaxometric behavior of two novel supramolecular diagnostic agents for magnetic resonance imaging (MRI) technique. These diagnostic agents are obtained for self-assembly of DTPA(Gd)-PEG8-(FY)3 or DOTA(Gd)-PEG8-(FY)3 peptide conjugates, in which the Gd-complexes are linked at the N-terminus of the PEG8-(FY)3 polymer peptide. This latter was previously found able to form self-supporting and stable soft hydrogels at a concentration of 1.0% wt. Analogously, also DTPA(Gd)-PEG8-(FY)3 and DOTA(Gd)-PEG8-(FY)3 exhibit the trend to gelificate at the same range of concentration. Moreover, the structural characterization points out that peptide (FY)3 moiety keeps its capability to arrange into β-sheet structures with an antiparallel orientation of the β-strands. The high relaxivity value of these nanostructures (~12 mM-1·s-1 at 20 MHz) and the very low in vitro cytotoxicity suggest their potential application as supramolecular diagnostic agents for MRI.
2020
13
2
1
16
MRI contrast agents; diagnostic agents; hydrogels; in vitro cytotoxicity; peptide conjugates
Gallo, Enrico; Diaferia, Carlo; Gregorio, Enza Di; Morelli, Giancarlo; Gianolio, Eliana; Accardo, Antonella
File in questo prodotto:
File Dimensione Formato  
pharmaceuticals-DTPA-DOTA(FY)3.pdf

Accesso aperto

Descrizione: Articolo principale
Tipo di file: PDF EDITORIALE
Dimensione 1.69 MB
Formato Adobe PDF
1.69 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2318/1725669
Citazioni
  • ???jsp.display-item.citation.pmc??? 16
  • Scopus 33
  • ???jsp.display-item.citation.isi??? 32
social impact