Human flavin-containing monooxygenase 3 (hFMO3) is a drug-metabolizing enzyme capable of performing N- or S-oxidation using the C4a-hydroperoxy intermediate. In this work, we employ both wild type hFMO3 as well as an active site polymorphic variant (N61S) to unravel the uncoupling reactions in the catalytic cycle of this enzyme. We demonstrate that in addition to H2O2 this enzyme also produces superoxide anion radicals as its uncoupling products. The level of uncoupling was found to vary between 50 and 70% (WT) and 90–98% (N61S) for incubations with NADPH and benzydamine over a period of 5 or 20 min, respectively. For the first time, we were able to follow the production of the superoxide radical in hFMO3, which was found to account for 13–18% of the total uncoupling of this human enzyme. Moreover, measurements in the presence or absence of the substrate show that the substrate lowers the level of uncoupling only related to the H2O2 and not the superoxide radical. This is consistent with the entry point of the substrate in this enzyme's catalytic cycle. These findings highlight the importance of the involvement of hFMO3 in the production of radicals in the endoplasmic reticulum, as well as the relevance of single-nucleotide polymorphism leading to deleterious effects of oxidative stress.

Uncoupled human flavin-containing monooxygenase 3 releases superoxide radical in addition to hydrogen peroxide

Catucci G.;Gao C.;Gilardi G.;jila Sadeghi
2019

Abstract

Human flavin-containing monooxygenase 3 (hFMO3) is a drug-metabolizing enzyme capable of performing N- or S-oxidation using the C4a-hydroperoxy intermediate. In this work, we employ both wild type hFMO3 as well as an active site polymorphic variant (N61S) to unravel the uncoupling reactions in the catalytic cycle of this enzyme. We demonstrate that in addition to H2O2 this enzyme also produces superoxide anion radicals as its uncoupling products. The level of uncoupling was found to vary between 50 and 70% (WT) and 90–98% (N61S) for incubations with NADPH and benzydamine over a period of 5 or 20 min, respectively. For the first time, we were able to follow the production of the superoxide radical in hFMO3, which was found to account for 13–18% of the total uncoupling of this human enzyme. Moreover, measurements in the presence or absence of the substrate show that the substrate lowers the level of uncoupling only related to the H2O2 and not the superoxide radical. This is consistent with the entry point of the substrate in this enzyme's catalytic cycle. These findings highlight the importance of the involvement of hFMO3 in the production of radicals in the endoplasmic reticulum, as well as the relevance of single-nucleotide polymorphism leading to deleterious effects of oxidative stress.
145
250
255
www.elsevier.com/locate/freeradbiomed
Flavin-containing monooxygenase; Hydrogen peroxide; N61S; Polymorphic variant; Superoxide radical; Uncoupling
Catucci G.; Gao C.; Rampolla G.; Gilardi G.; jila Sadeghi
File in questo prodotto:
File Dimensione Formato  
Superoxide-2019.pdf

accesso aperto

Descrizione: ROS
Tipo di file: POSTPRINT (VERSIONE FINALE DELL’AUTORE)
Dimensione 1.36 MB
Formato Adobe PDF
1.36 MB Adobe PDF Visualizza/Apri
1-s2.0-S0891584919308949-main.pdf

non disponibili

Tipo di file: PDF EDITORIALE
Dimensione 822.58 kB
Formato Adobe PDF
822.58 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: http://hdl.handle.net/2318/1727743
Citazioni
  • ???jsp.display-item.citation.pmc??? 0
  • Scopus 6
  • ???jsp.display-item.citation.isi??? 6
social impact