Various species of non-coding RNAs (ncRNAs) are enriched in specific subcellular compartments, but the mechanisms orchestrating their localization and their local functions remain largely unknown. We investigated both aspects using the elongating retinal ganglion cell axon and its tip, the growth cone, as models. We reveal that specific endogenous precursor microRNAs (pre-miRNAs) are actively trafficked to distal axons by hitchhiking primarily on late endosomes/lysosomes. Upon exposure to the axon guidance cue semaphorin 3A (Sema3A), pre-miRNAs are processed specifically within axons into newly generated miRNAs, one of which, in turn, silences the basal translation of tubulin beta 3 class III (TUBB3), but not amyloid beta precursor protein (APP). At the organismal level, these mature miRNAs are required for growth cone steering and a fully functional visual system. Overall, our results uncover a novel mode of ncRNA transport from one cytosolic compartment to another within polarized cells. They also reveal that newly generated miRNAs are critical components of a ncRNA-based signaling pathway that transduces environmental signals into the structural remodeling of subcellular compartments.

Axonal precursor miRNAs hitchhike on endosomes and locally regulate the development of neural circuits

Valdembri, Donatella;Serini, Guido;
2020-01-01

Abstract

Various species of non-coding RNAs (ncRNAs) are enriched in specific subcellular compartments, but the mechanisms orchestrating their localization and their local functions remain largely unknown. We investigated both aspects using the elongating retinal ganglion cell axon and its tip, the growth cone, as models. We reveal that specific endogenous precursor microRNAs (pre-miRNAs) are actively trafficked to distal axons by hitchhiking primarily on late endosomes/lysosomes. Upon exposure to the axon guidance cue semaphorin 3A (Sema3A), pre-miRNAs are processed specifically within axons into newly generated miRNAs, one of which, in turn, silences the basal translation of tubulin beta 3 class III (TUBB3), but not amyloid beta precursor protein (APP). At the organismal level, these mature miRNAs are required for growth cone steering and a fully functional visual system. Overall, our results uncover a novel mode of ncRNA transport from one cytosolic compartment to another within polarized cells. They also reveal that newly generated miRNAs are critical components of a ncRNA-based signaling pathway that transduces environmental signals into the structural remodeling of subcellular compartments.
2020
e102513
e102513
https://www.embopress.org/doi/10.15252/embj.2019102513
RNA localization; TUBB3; axon; neural circuit development; non-coding RNAs
Corradi, Eloina; Dalla Costa, Irene; Gavoci, Antoneta; Iyer, Archana; Roccuzzo, Michela; Otto, Tegan A; Oliani, Eleonora; Bridi, Simone; Strohbuecker, Stephanie; Santos-Rodriguez, Gabriela; Valdembri, Donatella; Serini, Guido; Abreu-Goodger, Cei; Baudet, Marie-Laure
File in questo prodotto:
File Dimensione Formato  
Corradi et al_EMBOJ_2020.pdf

Accesso aperto

Descrizione: Articolo principale
Tipo di file: PDF EDITORIALE
Dimensione 4.42 MB
Formato Adobe PDF
4.42 MB Adobe PDF Visualizza/Apri
Corradi et al_Suppl_EMBOJ_2020.pdf

Accesso aperto

Descrizione: Supplementary Information
Tipo di file: PDF EDITORIALE
Dimensione 1.94 MB
Formato Adobe PDF
1.94 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2318/1729274
Citazioni
  • ???jsp.display-item.citation.pmc??? 39
  • Scopus 49
  • ???jsp.display-item.citation.isi??? 49
social impact