In the last years, several authors studied a class of continuous-time semi-Markov processes obtained by time-changing Markov processes by hitting times of independent subordinators. Such processes are governed by integro-differential convolution equations of generalized fractional type. The aim of this paper is to develop a discrete-time counterpart of such a theory and to show relationships and differences with respect to the continuous time case. We present a class of discrete-time semi-Markov chains which can be constructed as time-changed Markov chains and we obtain the related governing convolution type equations. Such processes converge weakly to those in continuous time under suitable scaling limits.
On discrete-time semi-Markov processes
Federico Polito;Costantino Ricciuti
2021-01-01
Abstract
In the last years, several authors studied a class of continuous-time semi-Markov processes obtained by time-changing Markov processes by hitting times of independent subordinators. Such processes are governed by integro-differential convolution equations of generalized fractional type. The aim of this paper is to develop a discrete-time counterpart of such a theory and to show relationships and differences with respect to the continuous time case. We present a class of discrete-time semi-Markov chains which can be constructed as time-changed Markov chains and we obtain the related governing convolution type equations. Such processes converge weakly to those in continuous time under suitable scaling limits.File | Dimensione | Formato | |
---|---|---|---|
published.pdf
Accesso riservato
Descrizione: pdf
Tipo di file:
PDF EDITORIALE
Dimensione
451.85 kB
Formato
Adobe PDF
|
451.85 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.