We study the Cauchy problem for an evolution equation of Schrödinger type. The Hamiltonian is the Weyl quantization of a real homogeneous quadratic form with a pseudodifferential perturbation of negative order from Shubin’s class. We prove that the propagator is a Fourier integral operator of Shubin type of order zero. Using results for such operators and corresponding Lagrangian distributions, we study the propagator and the solution, and derive phase space estimates for them.
Shubin type Fourier integral operators and evolution equations
Cappiello M.;
2020-01-01
Abstract
We study the Cauchy problem for an evolution equation of Schrödinger type. The Hamiltonian is the Weyl quantization of a real homogeneous quadratic form with a pseudodifferential perturbation of negative order from Shubin’s class. We prove that the propagator is a Fourier integral operator of Shubin type of order zero. Using results for such operators and corresponding Lagrangian distributions, we study the propagator and the solution, and derive phase space estimates for them.File in questo prodotto:
File | Dimensione | Formato | |
---|---|---|---|
Cappiello2020_Article_ShubinTypeFourierIntegralOpera.pdf
Accesso riservato
Tipo di file:
PDF EDITORIALE
Dimensione
325.4 kB
Formato
Adobe PDF
|
325.4 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
Schroedinger11.pdf
Accesso aperto
Descrizione: postprint
Tipo di file:
POSTPRINT (VERSIONE FINALE DELL’AUTORE)
Dimensione
381.12 kB
Formato
Adobe PDF
|
381.12 kB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.