We study the Cauchy problem for an evolution equation of Schrödinger type. The Hamiltonian is the Weyl quantization of a real homogeneous quadratic form with a pseudodifferential perturbation of negative order from Shubin’s class. We prove that the propagator is a Fourier integral operator of Shubin type of order zero. Using results for such operators and corresponding Lagrangian distributions, we study the propagator and the solution, and derive phase space estimates for them.

Shubin type Fourier integral operators and evolution equations

Cappiello M.;
2020-01-01

Abstract

We study the Cauchy problem for an evolution equation of Schrödinger type. The Hamiltonian is the Weyl quantization of a real homogeneous quadratic form with a pseudodifferential perturbation of negative order from Shubin’s class. We prove that the propagator is a Fourier integral operator of Shubin type of order zero. Using results for such operators and corresponding Lagrangian distributions, we study the propagator and the solution, and derive phase space estimates for them.
2020
11
1
119
139
http://www.springer.com/birkhauser/mathematics/journal/11868
Fourier integral operator; Perturbation; Schrödinger equation; Semigroup
Cappiello M.; Schulz R.; Wahlberg P.
File in questo prodotto:
File Dimensione Formato  
Cappiello2020_Article_ShubinTypeFourierIntegralOpera.pdf

Accesso riservato

Tipo di file: PDF EDITORIALE
Dimensione 325.4 kB
Formato Adobe PDF
325.4 kB Adobe PDF   Visualizza/Apri   Richiedi una copia
Schroedinger11.pdf

Accesso aperto

Descrizione: postprint
Tipo di file: POSTPRINT (VERSIONE FINALE DELL’AUTORE)
Dimensione 381.12 kB
Formato Adobe PDF
381.12 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2318/1731043
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 3
  • ???jsp.display-item.citation.isi??? 3
social impact