Tomato (Solanum lycopersicum) plants have four fructokinase genes, SlFRK1-4. The SlFRK4 is expressed only in pollen whereas the other three are expressed in all plant parts. While SlFRK2 and SlFRK3 are involved in vascular tissue development and affects the shape, size, and cell-wall width of xylem vessels and xylem fibers, the role of SlFRK1 has not been studied previously. The current work investigates the expression of SlFRK1 using transgenic tomato plants expressing the β-glucuronidase reporter gene under the SlFRK1 promoter, as well as the role of SlFRK1 using transgenic plants with antisense suppression of SlFRK1. The SlFRK1 promoter is expressed primarily in vascular tissues and specific suppression of SlFRK1 reduces water transport in stems, but has no other anatomical or phenotypic effects. Combined suppression of SlFRK1 and SlFRK2 severely inhibited plant growth and an anatomical analysis revealed a reduction in secondary xylem area and distorted phloem fibers characterized by thin cell walls and reduced lignification. The results suggest that SlFRK1 is involved in vascular tissue development and hydraulic conductivity in tomato plants and that SlFRK1 is important for normal phloem fiber development, together with SlFRK2.

The tomato cytosolic fructokinase FRK1 is important for phloem fiber development

Secchi F.;
2018-01-01

Abstract

Tomato (Solanum lycopersicum) plants have four fructokinase genes, SlFRK1-4. The SlFRK4 is expressed only in pollen whereas the other three are expressed in all plant parts. While SlFRK2 and SlFRK3 are involved in vascular tissue development and affects the shape, size, and cell-wall width of xylem vessels and xylem fibers, the role of SlFRK1 has not been studied previously. The current work investigates the expression of SlFRK1 using transgenic tomato plants expressing the β-glucuronidase reporter gene under the SlFRK1 promoter, as well as the role of SlFRK1 using transgenic plants with antisense suppression of SlFRK1. The SlFRK1 promoter is expressed primarily in vascular tissues and specific suppression of SlFRK1 reduces water transport in stems, but has no other anatomical or phenotypic effects. Combined suppression of SlFRK1 and SlFRK2 severely inhibited plant growth and an anatomical analysis revealed a reduction in secondary xylem area and distorted phloem fibers characterized by thin cell walls and reduced lignification. The results suggest that SlFRK1 is involved in vascular tissue development and hydraulic conductivity in tomato plants and that SlFRK1 is important for normal phloem fiber development, together with SlFRK2.
2018
62
2
353
361
cell walls; hydraulic conductivity; lignification; water transport; xylem vessels
Stein O.; Secchi F.; German M.A.; Damari-Weissler H.; Aloni R.; Holbrook N.M.; Zwieniecky M.A.; Granot D.
File in questo prodotto:
File Dimensione Formato  
2018_BiologiaPlantarum.pdf

Accesso riservato

Tipo di file: PDF EDITORIALE
Dimensione 3.12 MB
Formato Adobe PDF
3.12 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2318/1734688
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 10
  • ???jsp.display-item.citation.isi??? 11
social impact