Artemisinin resistance is a major threat to malaria control efforts. Resistance is characterized by an increase in the Plasmodium falciparum parasite clearance half-life following treatment with artemisinin-based combination therapies (ACTs) and an increase in the percentage of surviving parasites. The remarkably short blood half-life of artemisinin derivatives may contribute to drug-resistance, possibly through factors including sub-lethal plasma concentrations and inadequate exposure. Here we selected for a new strain of artemisinin resistant parasites, termed the artemisinin resistant strain 1 (ARS1), by treating P. falciparum Palo Alto (PA) cultures with sub-lethal concentrations of dihydroartemisinin (DHA). The resistance phenotype was maintained for over 1 year through monthly maintenance treatments with low doses of 2.5 nM DHA. There was a moderate increase in the DHA IC50 in ARS1 when compared with parental strain PA after 72 h of drug exposure (from 0.68 nM to 2 nM DHA). In addition, ARS1 survived treatment physiologically relevant DHA concentrations (700 nM) observed in patients. Furthermore, we confirmed a lack of cross-resistance against a panel of antimalarials commonly used as partner drugs in ACTs. Finally, ARS1 did not contain Pfk13 propeller domain mutations associated with ART resistance in the Greater Mekong Region. With a stable growth rate, ARS1 represents a valuable tool for the development of new antimalarial compounds and studies to further elucidate the mechanisms of ART resistance.

Induction of high tolerance to artemisinin by sub-lethal administration: A new in vitro model of P. falciparum

De Lucia S.;Pau M. C.;Turrini F.
2018-01-01

Abstract

Artemisinin resistance is a major threat to malaria control efforts. Resistance is characterized by an increase in the Plasmodium falciparum parasite clearance half-life following treatment with artemisinin-based combination therapies (ACTs) and an increase in the percentage of surviving parasites. The remarkably short blood half-life of artemisinin derivatives may contribute to drug-resistance, possibly through factors including sub-lethal plasma concentrations and inadequate exposure. Here we selected for a new strain of artemisinin resistant parasites, termed the artemisinin resistant strain 1 (ARS1), by treating P. falciparum Palo Alto (PA) cultures with sub-lethal concentrations of dihydroartemisinin (DHA). The resistance phenotype was maintained for over 1 year through monthly maintenance treatments with low doses of 2.5 nM DHA. There was a moderate increase in the DHA IC50 in ARS1 when compared with parental strain PA after 72 h of drug exposure (from 0.68 nM to 2 nM DHA). In addition, ARS1 survived treatment physiologically relevant DHA concentrations (700 nM) observed in patients. Furthermore, we confirmed a lack of cross-resistance against a panel of antimalarials commonly used as partner drugs in ACTs. Finally, ARS1 did not contain Pfk13 propeller domain mutations associated with ART resistance in the Greater Mekong Region. With a stable growth rate, ARS1 represents a valuable tool for the development of new antimalarial compounds and studies to further elucidate the mechanisms of ART resistance.
2018
13
1 - Article number e0191084
1
18
Antimalarials; Artemisinins; DNA, Protozoan; Dose-Response Relationship, Drug; Drug Resistance; Genotype; Inhibitory Concentration 50; Plasmodium falciparum; Polymerase Chain Reaction; Adaptation, Physiological
De Lucia S.; Tsamesidis I.; Pau M.C.; Kesely K.R.; Pantaleo A.; Turrini F.
File in questo prodotto:
File Dimensione Formato  
pone.0191084.pdf

Accesso aperto

Descrizione: Articolo principale
Tipo di file: PDF EDITORIALE
Dimensione 5.91 MB
Formato Adobe PDF
5.91 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2318/1736710
Citazioni
  • ???jsp.display-item.citation.pmc??? 11
  • Scopus 13
  • ???jsp.display-item.citation.isi??? 15
social impact