Background-: Life-threatening disorders of heart rhythm may arise during infancy and can result in the sudden and tragic death of a child. We performed exome sequencing on 2 unrelated infants presenting with recurrent cardiac arrest to discover a genetic cause. Methods and Results-: We ascertained 2 unrelated infants (probands) with recurrent cardiac arrest and dramatically prolonged QTc interval who were both born to healthy parents. The 2 parent-child trios were investigated with the use of exome sequencing to search for de novo genetic variants. We then performed follow-up candidate gene screening on an independent cohort of 82 subjects with congenital long-QT syndrome without an identified genetic cause. Biochemical studies were performed to determine the functional consequences of mutations discovered in 2 genes encoding calmodulin. We discovered 3 heterozygous de novo mutations in either CALM1 or CALM2, 2 of the 3 human genes encoding calmodulin, in the 2 probands and in 2 additional subjects with recurrent cardiac arrest. All mutation carriers were infants who exhibited life-threatening ventricular arrhythmias combined variably with epilepsy and delayed neurodevelopment. Mutations altered residues in or adjacent to critical calcium binding loops in the calmodulin carboxyl-terminal domain. Recombinant mutant calmodulins exhibited several-fold reductions in calcium binding affinity. Conclusions-: Human calmodulin mutations disrupt calcium ion binding to the protein and are associated with a life-threatening condition in early infancy. Defects in calmodulin function will disrupt important calcium signaling events in heart, affecting membrane ion channels, a plausible molecular mechanism for potentially deadly disturbances in heart rhythm during infancy.

Calmodulin mutations associated with recurrent cardiac arrest in infants

DE FERRARI, GAETANO;
2013-01-01

Abstract

Background-: Life-threatening disorders of heart rhythm may arise during infancy and can result in the sudden and tragic death of a child. We performed exome sequencing on 2 unrelated infants presenting with recurrent cardiac arrest to discover a genetic cause. Methods and Results-: We ascertained 2 unrelated infants (probands) with recurrent cardiac arrest and dramatically prolonged QTc interval who were both born to healthy parents. The 2 parent-child trios were investigated with the use of exome sequencing to search for de novo genetic variants. We then performed follow-up candidate gene screening on an independent cohort of 82 subjects with congenital long-QT syndrome without an identified genetic cause. Biochemical studies were performed to determine the functional consequences of mutations discovered in 2 genes encoding calmodulin. We discovered 3 heterozygous de novo mutations in either CALM1 or CALM2, 2 of the 3 human genes encoding calmodulin, in the 2 probands and in 2 additional subjects with recurrent cardiac arrest. All mutation carriers were infants who exhibited life-threatening ventricular arrhythmias combined variably with epilepsy and delayed neurodevelopment. Mutations altered residues in or adjacent to critical calcium binding loops in the calmodulin carboxyl-terminal domain. Recombinant mutant calmodulins exhibited several-fold reductions in calcium binding affinity. Conclusions-: Human calmodulin mutations disrupt calcium ion binding to the protein and are associated with a life-threatening condition in early infancy. Defects in calmodulin function will disrupt important calcium signaling events in heart, affecting membrane ion channels, a plausible molecular mechanism for potentially deadly disturbances in heart rhythm during infancy.
2013
127
9
1009
1017
arrhythmia; calcium signaling; death; sudden; cardiac; exome
CROTTI, LIA; Johnson C.N.; Graf E.; DE FERRARI, GAETANO; Cuneo B.F.; Ovadia M.; Papagiannis J.; Feldkamp M.D.; Rathi S.G.; Kunic J.D.; Pedrazzini M.; Wieland T.; Lichtner P.; Beckmann B.M.; Clark T.; Shaffer C.; Benson D.W.; Kääb S.; Meitinger T.; Strom T.M.; Chazin W.J.; SCHWARTZ, PETER; George AL J.r.
File in questo prodotto:
File Dimensione Formato  
Circulation 2013_Crotti_Calmodulin.pdf

Accesso riservato

Tipo di file: PDF EDITORIALE
Dimensione 1.63 MB
Formato Adobe PDF
1.63 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2318/1737520
Citazioni
  • ???jsp.display-item.citation.pmc??? 171
  • Scopus 295
  • ???jsp.display-item.citation.isi??? 278
social impact