The inorganic component of hazelnuts was considered as a possible marker for geographical allocation and for the assessment of technological impact on their quality. The analyzed samples were Italian hazelnuts of the cultivar Tonda Gentile Romana and Turkish hazelnuts of the cultivars Tombul, Palaz and Çakildak. The hazelnuts were subjected to different drying procedures and different conservative methods. The concentration of 13 elements, namely Ba, Ca, Cu, Fe, K, Mg, Mn, Na, Ni, P, Sn, Sr and Zn, were quantified by inductively coupled plasma optical emission spectroscopy (ICP-OES). All the samples were previously digested in a microwave oven. Before proceeding with the analysis of the samples, the whole procedure was optimized and tested on a certified reference material. The results show that the inorganic component: (i) can represent a fingerprint, able to identify the geographical origin of hazelnuts, becoming an important quality marker for consumer protection; (ii) is strongly influenced by the treatments undergone by the investigated product during all the processing stages. A pilot study was also carried out on hazelnuts of the cultivar Tonda Gentile Trilobata Piemontese, directly harvested from the plant during early development to maturity and analyzed to monitor the element concentration over time.
The Inorganic Component as a Possible Marker for Quality and for Authentication of the Hazelnut’s Origin
Paolo InaudiFirst
;Agnese Giacomino
;Mery Malandrino;Carmela La Gioia;Eleonora Conca;Ornella AbollinoLast
2020-01-01
Abstract
The inorganic component of hazelnuts was considered as a possible marker for geographical allocation and for the assessment of technological impact on their quality. The analyzed samples were Italian hazelnuts of the cultivar Tonda Gentile Romana and Turkish hazelnuts of the cultivars Tombul, Palaz and Çakildak. The hazelnuts were subjected to different drying procedures and different conservative methods. The concentration of 13 elements, namely Ba, Ca, Cu, Fe, K, Mg, Mn, Na, Ni, P, Sn, Sr and Zn, were quantified by inductively coupled plasma optical emission spectroscopy (ICP-OES). All the samples were previously digested in a microwave oven. Before proceeding with the analysis of the samples, the whole procedure was optimized and tested on a certified reference material. The results show that the inorganic component: (i) can represent a fingerprint, able to identify the geographical origin of hazelnuts, becoming an important quality marker for consumer protection; (ii) is strongly influenced by the treatments undergone by the investigated product during all the processing stages. A pilot study was also carried out on hazelnuts of the cultivar Tonda Gentile Trilobata Piemontese, directly harvested from the plant during early development to maturity and analyzed to monitor the element concentration over time.File | Dimensione | Formato | |
---|---|---|---|
Inaudi (2020) - Nocciole.pdf
Accesso aperto
Descrizione: Articolo principale
Tipo di file:
PDF EDITORIALE
Dimensione
433.04 kB
Formato
Adobe PDF
|
433.04 kB | Adobe PDF | Visualizza/Apri |
Inaudi et al, 2020_manuscript and supp mat.pdf
Accesso aperto
Descrizione: File completo: manoscritto+Supplementary material
Tipo di file:
PDF EDITORIALE
Dimensione
1.54 MB
Formato
Adobe PDF
|
1.54 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.