We prove the existence of a pair of positive radial solutions for the Neumann boundary value problem div([Formula presented])+λa(|x|)up=0,in B,∂νu=0,on ∂B,where B is a ball centered at the origin, a(|x|) is a radial sign-changing function with ∫Ba(|x|)dx<0, p>1 and λ>0 is a large parameter. The proof is based on the Leray–Schauder degree theory and extends to a larger class of nonlinearities.
Pairs of positive radial solutions for a Minkowski-curvature Neumann problem with indefinite weight
Boscaggin A.
;Feltrin G.
2020-01-01
Abstract
We prove the existence of a pair of positive radial solutions for the Neumann boundary value problem div([Formula presented])+λa(|x|)up=0,in B,∂νu=0,on ∂B,where B is a ball centered at the origin, a(|x|) is a radial sign-changing function with ∫Ba(|x|)dx<0, p>1 and λ>0 is a large parameter. The proof is based on the Leray–Schauder degree theory and extends to a larger class of nonlinearities.File in questo prodotto:
File | Dimensione | Formato | |
---|---|---|---|
20BosFelNA.pdf
Accesso riservato
Tipo di file:
PDF EDITORIALE
Dimensione
886.22 kB
Formato
Adobe PDF
|
886.22 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.