We prove the existence of a pair of positive radial solutions for the Neumann boundary value problem div([Formula presented])+λa(|x|)up=0,in B,∂νu=0,on ∂B,where B is a ball centered at the origin, a(|x|) is a radial sign-changing function with ∫Ba(|x|)dx<0, p>1 and λ>0 is a large parameter. The proof is based on the Leray–Schauder degree theory and extends to a larger class of nonlinearities.

Pairs of positive radial solutions for a Minkowski-curvature Neumann problem with indefinite weight

Boscaggin A.
;
Feltrin G.
2020-01-01

Abstract

We prove the existence of a pair of positive radial solutions for the Neumann boundary value problem div([Formula presented])+λa(|x|)up=0,in B,∂νu=0,on ∂B,where B is a ball centered at the origin, a(|x|) is a radial sign-changing function with ∫Ba(|x|)dx<0, p>1 and λ>0 is a large parameter. The proof is based on the Leray–Schauder degree theory and extends to a larger class of nonlinearities.
2020
196
1
14
https://arxiv.org/abs/1912.12205
Indefinite weight; Minkowski-curvature operator; Neumann problem; Positive solutions; Radial solutions; Topological degree
Boscaggin A.; Feltrin G.
File in questo prodotto:
File Dimensione Formato  
20BosFelNA.pdf

Accesso riservato

Tipo di file: PDF EDITORIALE
Dimensione 886.22 kB
Formato Adobe PDF
886.22 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2318/1739971
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 11
  • ???jsp.display-item.citation.isi??? 11
social impact