A highly versatile and flexible copper nanoparticle (Cu(0) NPs) catalytic system has been developed for the controlled and selective transfer hydrogenation of nitroarene. Interestingly, the final catalytic product is strongly dependent on the nature of the hydrogen donor source. The yield of nitrobenzene reduction to aniline increased from 20% to an almost quantitative yield over a range of alcohols, diols and aminoalcohols. In glycerol at 130 °C aniline was isolated in 93% yield. In ethanolamine, the reaction was conveniently performed at a lower temperature (55 °C) and gave selectively substituted azobenzene (92% yield). Experimental studies provide support for a reaction pathway in which the Cu(0) NPs catalysed transfer hydrogenation of nitrobenzene to aniline proceeds via the condensation route. The high chemoselectivity of both protocols has been proved in experiments on a panel of variously substituted nitroarenes. Enabling technologies, microwaves and ultrasound, used both separately and in combination, have successfully increased the reaction rate and reaction yield. (Figure presented.).
Tuneable Copper Catalysed Transfer Hydrogenation of Nitrobenzenes to Aniline or Azo Derivatives
Moran Plata Maria Jesus;Martina K.
;Tagliapietra S.;Manzoli M.;Cravotto G.
2020-01-01
Abstract
A highly versatile and flexible copper nanoparticle (Cu(0) NPs) catalytic system has been developed for the controlled and selective transfer hydrogenation of nitroarene. Interestingly, the final catalytic product is strongly dependent on the nature of the hydrogen donor source. The yield of nitrobenzene reduction to aniline increased from 20% to an almost quantitative yield over a range of alcohols, diols and aminoalcohols. In glycerol at 130 °C aniline was isolated in 93% yield. In ethanolamine, the reaction was conveniently performed at a lower temperature (55 °C) and gave selectively substituted azobenzene (92% yield). Experimental studies provide support for a reaction pathway in which the Cu(0) NPs catalysed transfer hydrogenation of nitrobenzene to aniline proceeds via the condensation route. The high chemoselectivity of both protocols has been proved in experiments on a panel of variously substituted nitroarenes. Enabling technologies, microwaves and ultrasound, used both separately and in combination, have successfully increased the reaction rate and reaction yield. (Figure presented.).File | Dimensione | Formato | |
---|---|---|---|
Tuneable Copper Catalysed Transfer Hydrogenation of Nitrobenzenes to Aniline or Azo Derivatives.pdf
Accesso riservato
Tipo di file:
PDF EDITORIALE
Dimensione
876.33 kB
Formato
Adobe PDF
|
876.33 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
adsc.202000127.pdf
Accesso riservato
Tipo di file:
PDF EDITORIALE
Dimensione
5.53 MB
Formato
Adobe PDF
|
5.53 MB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.